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Ultrasonic nondestructive evaluation of fibre-reinforced
composite materials — a review

VIKRAM K KINRA and VINAY DAYAL

Department of Aerospace Engineering and Mechanics and Materials
Center, Texas A&M University, College Station, Texas 77843, USA

Abstract. This paper reviews varinus ultrasonic nondestructive evalu-
ation techniques applicable to fibre-reinforced composites. The techniques
are briefly described and key references are cited. Methods to evaluate the
reduced stiffness of composites due to micro-damage are described. Results
show that for composites through-the-thickness attenuation increases and
stiffness does not change due to transverse cracks, but in-plane stiffness and
attenuation changes are substantial and can be measured by the Lamb
wave techniques.

Keywords. Ultrasonics; nondestructive evaluation; composites; thin
laminates.

1. Introduction

The excellent strength-to-weight ratio and the flexibility in tailoring the strength and
stiffness of fibre-reinforced materials have made composites an indispensable structural
material. Mixing of brittle but high strength fibres (e.g. graphite fibre, o, = 2-5 GN/m?)
with viscoelastic and low strength (e.g. epoxy g, = 0-10 GN/m?) matrices, however, has
created some very complex damage mechanism problems. Damage initiation and
propagation are very different in composites from those in metals. The effect of
mechanical, thermal or humidity loading is very complex in composites. Nondestruc-
tive evaluation (NDE) of in-service components is important because the damage
initiation and growth mechanisms are not fully understood.

Various NDE techniques such as X-ray radiography, dye-penetrant tests, ultrasonics,
thermography, acoustic emission, holography etc. have been successfully used to
characterize damage in composites. This review is restricted to uitrasonic NDE of
composites. It will also cover the technique of acoustic emission as well as the more
recently developed method of acousto-ultrasonics.

In metals when damage is initiated, it becomes the nucleating site for further damage
growth. On the other hand, Reifsnider et al (1983, pp. 399-420) have shown that ‘in
fibre-reinforced composites, a very different phenomenon takes place. Invariably, the
first mode of damage in compcsites is matrix cracking. The fibres, being much stronger
than the matrix, are able to carry the extra load due to the redistribution of stresses in
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420 Vikram K Kinra and Vinay Dayal

the vicinity of the matrix cracks. Fibres also act as matrix crack arresters. Stresses in the
vicinity of the first crack are relieved and the next crack forms where the stresses again
develop to a critical value. As a result the entire structure develops microcracks without
endangering the integrity of the structure. Up to this stage of damage, identification of
individual cracks does not serve any useful purpose. But due to these cracks the stiffness
of the structure is reduced and hence the interest lies in the determination of the residual
stiffness and the attenuation of the material. The transverse cracks in the 90°-plies are
arrested by the 0°-plies. The point of crack arrest also becomes a point of stress
concentration and, therefore, a nucleating site for the delaminations. At this stage of
damage development microcracks have lost their significance and the attention 1s
turned to the detection of macro-damage. The damage size and location are also of
interest during manufacturing since any foreign material, such as dust, grease or oil left
on the surface of the lamina during fabrication can result in debonding. Thus all NDE
techniques can broadly be categorized as (1) techniques for detection, sizing and
location of damage, and (2) evaluation of mechanical properties such as stiffness and
uitrasonic attenuation.

2. Detection of damage, size and location

According to Krautkramer & Krautkramer (1983), Sokolov (1929) used a through-the-
thickness transmission technique for flaw detection in metals. In regions where cracks
exist, the sound intensity is small compared to the undamaged regions. Firestone (1945)
utilized the pulse-echo method for the detection of flaws in materials. The ultrasonic
pulses reflected from the flaws are detected to map out the flaws. The time taken for the
waves to travel from the transmitting transducer to the receiving transducer gives the
depth of the flaw if the wave .peed in the material is accurately known. Today, using
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422 Vikram K Kinra and Vinay Dayal

Figure3. Digital C-scan of a 32-ply graphite/epoxy laminate with central and circumferential
damage as well as thickness variation across the specimen (R A Blake, private commun.)
(magnification = 0-8 x ; scan line spacing = 0-082 in.; scan time = 61s).

computers with multicolored plotting facilities, a very detailed picture of the damage
can be obtained. This pulse-echo technique is now better known as the “C-scan”
technique. The basic concept behind this technique is shown in figure 1. The same
transducer is used for production and reception of the waves. A typical signal trace is
also shown. The first pulse is the front surface reflection, the second is reflection from
the crack, and the third pulse is from the back surface. The presence of central pulse
indicates a flaw in the material. The depth A of the crack can be obtained by an accurate
measurement of time t and prior knowledge of the wavespeed ¢ in the material: h = ct/2.
Bar-Cohen et al (1979) have used this technique to detect | mm diameter delaminations
in graphite/epoxy laminates with an accuracy of +0-2 mm in depth measurements?
Daniel et al (1981) have used the C-scan for monitoring fatigue damage in composites; a
typical C-scan picture from his work is reproduced in figure 2. Blake (1982, 1983) and
Blake & Hartman (1984) have used computers for digital analysis and presentation of
the damage pictures; see figure 3 for a digital C-scan picture.
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Acoustic emission (AE) is another technique which is used for the detection of the
onset of damage, its size and location. The deformation of a structure takes place under
loading. This deformation eventually results in the generation of cracks or discontinu-
ities in the structure. During the initiation and development of these cracks energy is
released as sound waves. Thus the instant of initiation of damage can be recorded by
detecting the AE waves. By a simple triangulation technique the location of damage can
also be estimated fairly accurately. This is an excellent on-board technique, and
although not a nondestructive technique, it is able to pinpoint the onset of failure.

Liptai (1972) found that in composites the acoustic emission takes place in two
categories, the low level emission generated by plastic deformation of matrix and fibres,
and the higher level emission generated by fibre failure, matrix cracking, interface
failure and fibre pullout. Acoustic emission techniques have been used to study the real-
time behavior of composite materials during fatigue loading by William & Reifsnider
(1977). They have shown that AE data can be combined with video-thermography and
dynamic recording of compliance to get meaningful results for the real-time NDE. Becht
etat (1976) and Baily etal (1980) have used AE to investigate flaw formation and
propagation in graphite rcinforced plastic (GRP) pressure tubes, and to evaluate the
fracture behavior of notched-bend specimens in flexural and fatigue experiments. They
have reported some success in identifying fibre failure from matrix failure by amplitude
distribution analysis. Arora & Tangri (1981) have used AE count rate (number of times
the amplitude crosses the threshold) to estimate the growth rate of cracks in Zr-2-5%,
Nb. William & Egan (1979) and Belchamber et al (1983) have used spectral analysis of
the AE signal to analyse fibre composite failure mechanisms. Since various types of
damage may occur at the same time, it is rather difficult to differentiate between them.
in this work, groups of AE events are treated as random data and are statistically
analysed to identify group characteristics of different failure modes.

Vary & Bowles (1977, pp. 242-258) and Vary (1982) have combined AE with
ultrasonics and developed the acousto-ultrasonic technique for characterization of
fibre reinforced composites. The acoustic emission is stimuiated by passing ultrasonic
waves in structures, These AE waves arc then detected by the usual AE procedures. These
complex waves have been quantified by the “stress wave factor” (SW¥) technique which
will be described next. Talreja et al (1984, pp. 1099-1106) have used the technique
developed by Vary to assess stiffness degradation in graphite/epoxy laminates.

The stress wave factor technique was proposed by Vary & Bowles (1977, pp. 242~
258). The swr is defined as; SWF = g=r»»n, where g is the time interval over which the
signal is recorded, r is the repetition rate of simulated AE waves and » is the number of
oscillations each AE burst exceeds a fixed threshold voltage. Vary & Lark (1979) have
shown that SWF can be correlated with the variations of the tensile and shear strengths
of composite materials. William & Lampert (1980) have used a modified swr for the
degradation studies of impact damage in graphite-fibre composites. SWF is considered
to be a measure of goodness of the material; a high swr indicates a less damaged
specimen. Obviously, SWF is inversely proportional to the atteruation in the material.

ra
3. Acoustic parameters (wavespeed and attenuation) for the NDE of composites

It is well-known that the wavespeed of sound in a material is related to its stiffness:
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424 Vikram K Kinra and Vinay Dayal

¢* = E/p where c is the speed of sound, E is an approximate stiffness and p is the density.
The presence of defects (e.g. voids, cracks, particles etc.) changes the effective stiffness of
the material. When a mechanical wave of wavelength large in comparison to the crack
size is propagated through such a medium, the change in stiffness is manifested as a
change in the sound velocity according to the above equation. Furthermore, the defects
act as wave scatterers. As a result, the defect population also manifests itself in the
attenuation of the wave passed through the material. Kinra et al (1980, 1982), Kinra &
Anand (1982), Kinra & Ker (1982, 1983) and Kinra (1984, pp. 983-991) have measured
c and z (attenuation coefficient) for a variety of particulate composites. As expected
both ¢ and x were found to depend strongly on the volume fraction of inclusions. An
unexpected result was that near a critical frequency, ¢ and x were also found to be highly
sensitive functions of frequency. This was attributed to the excitation of the
fundamental resonance of the particles or voids.

The anisotropy of composites can greatly complicate the interpretation of the
received ultrasonic signals. Kriz & Ledbetter (1983) and Kinra & Eden (1984) have
obtairied the solution of the Christoffel's equations given by Musgrave (1970) to
graphically depict stiffness, longitudinal wave velocity and shear velocity variations in
graphite/epoxy laminates. Some results obtained by Kinra & Eden (1984) are shown in
figure 4. Here, slowness is the inverse of velocity. Shown also on the plot are the group
velocity vectors (energy propagation directions) which are always perpendicular to the
slowness surface.

Various researchers have used ultrasonics for the NDE of composites by relating the
damage to the acoustic parameters. Ultrasonic waves have been used to measure the
stiffness parameters in composites by Tauchert & Guzelsu (1971, 1972) Kriz &
Stinchcomb (1979), Mann et al (1980), William et al (1980a) and Ueda et al (1983).
Reynold & Wilkinson (1979) have used the measurement of difference in wave
velocities for the estimation of porosity in composite materials. Heyman and Cantrell
(1979, pp. 45-56) used a phase-insensitive transducer to study the effect of material
inhomogeneity on ultrasonic measurements. Ultrasonic attenuation has been used to
characterize damage in fibre composites by Hayford & Henneke (1979, pp. 184-200),
Lee & Williams (1980), William et al (1980b, 1982), William & Doll (1980), Ulman &

v

Figure 4. Slowness surfaces for a
unidirectional graphite/epoxy com-
posite. L: quasi-longitudinal, SV:
quasi-shear (vertical), and SH:
quasi-shear (horizontal) surfaces. F
is the energy propagation direction.
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Henneke (1982, pp. 323-342) and Hale & Ashton (1985). Ringermacher {1980, pp. 957-
960) has utilized the changes in wavespeed to characterize damage in composites. He
has shown that wavespeed is not a useful parameter to characterize damage in fibre
composites. Cantrell er al (1980, pp. 1003-1005) have measured both attenuation and
wavespeed and reached the same conclusion that while attenuation is a very sensitive
measure of damage, wavespeed or stiffness is not. Eden (1985) has tested transverse
cracks generated in [0490,0,], graphite/epoxy specimens under static loading. He
has used the pulse-echo spectroscopic technique to measure both wavespeed and
attenuation. He has shown that as the damage increases, the pulses become broad
(dispersive effect) and it becomes increasingly difficult to make good measurements of
the acoustic parameters. He has also shown that when the waves propagate normal to
the plane of the plate then the interaction between the cracks and waves is small. Hence
wavespeed does not change but the increase in attenuation is appreciable.

4. Research of the present authors

We now summarize the principal research carried out by us. A detailed literature
survey revealed that there was no method availabie to measure the acoustic parameters
for thin specimens. We expect that aerospace structures will be thin and so Dayal et al
(1986, pp. 899-904) have developed uitrasonic techniques for the measurement of
acoustic parameters in thin specimens. When the specimen is thin the wave reflections
from the two surfaces interfere and the classical time-of-flight method breaks down. In
our technique the data is transformed from the time domain to the frequency domain
by the use of fast fourier transforms (FFT). The techniques are fully computer-controlled
and hence ca. Lo very easily adapted for automation and remotc control. These
techniques have been applied to the monitoring of damage in fibre-reinforced
composites by Dayal & Kinra (1986). We found that attenuation is a very sensitive
parameter of damage while wavespeed is rather insensitive. Results also show that the
technique is very accurate and highly reproducible.

4.1 Through-the-thickness measurement of acoustic parameters

Let an infinite elastic plate be immersed in an elastic fluid (water). The time-versus-
distance diagram of various reflected and transmitted pulses is shown in figure 5. If the
plate is thick enough then 2 and 6 or 4 and 6 can be separated in the time domain. The
available techniques (toneburst, pulse-superposition, pulse-echo etc.) are adequate to
calculate the wavespeed and attenuation (though not very accurate for attenuation). If
the plate is thin then 2, 6, 10 etc. or 4, 8, 12 etc. interfere and acoustic parameters cannot
be calculated using any of the currently available techniques. The technique developed
by us removes these restrictions and we have been successful in measuring wavespeed
for aluminium plates down to 0-258 mm (10 mii) thickness. The equations used to
reduce the data for these measurements are as follows. The first case we consider is
when the plate thickness is such that a single pulse of signal is used and the various’
reflected or transmitted pulses can be separated in the time domain. Then,

(G*/F* — 1) = — T, Ty, exp(— i2kh), (M

where G* is the FFT of pulses 2 + 6 and F* is the FFT of pulse 2; T, is the transmission
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Figure 5. Time-versus-distance diagram for a piate immersed in a fluid.

coeflicient for wave from water to plate and T,, is the transmission coefficient from
plate to water; k =k, + ik, is the complex wavenumber, k, = w/c, w is the circular
frequency and c is the wavespeed, k, is the attenuation coeflicient; and h is the plate
thickness. Then,

c=4nh/(~ ¢/f) and k= In M/2h, @

where ¢ is the phase of (G*/F* — 1) and M = |(G*/F*)/T, T,,!.

The wavespeed is calculated by plotting the phase-versus-frequency plot and the
slope is obtained by fitting a least squares straight line through the points. Attenuation
is ootained from the ratio of the magnitudes.

If the transmitted signal is used then the equations are,

G*/F* = R2, exp(— i2kh) 3)

where G* is the FFT of pulse 8 aud F* is the FFT of pulse 4.
The wavespeed and attenuation are calculated from (2) with M = [(G*/F*)/R{,1.
Now the case where the pulses cannot be separated is considered. If the reflected field
is recorded by the transducer then the governing equation is

B/(1 + B)= R3, exp(— i2kh) 4

where = R,;R,,(G*/F* —1)/T,, T;, and R,,(R,,) is the reflection coefficient of a
wave in water (plate) from plate (water). G* is the FFT of pulses 2 + 6 + 10 + ... 00 and
F* is the FFT of a reference signal obtained by replacing the specimen by a thick plate of
the same material and surface conditions.

If the transmitted signal is recorded by the transducer,

G*/F* = Ty, Ty  exp { — ih(k — ko) }/{1 — R, exp(— i2kh)} )

where k, is the wavenumber of the wave in water, G* is the FrT of pulses 4 + 8 + 12
+...00 and F* is the FFT of signal when there is no specimen between the transducers.
Note that this is a quadratic equation in exp (— ikh).

These equations are equally valid for longitudinal and shear waves and have been
used to measure both types of waves. They have been applied to a variety of specimens
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and the results are shown in table 1. The thickness of a plate of aluminium was reduced
by careful machining and the wavespeed calculated at various thickness. The results
show excellent repeatability and accuracy. It may be mentioned here that aithough the
derivation assumed that the plate is elastic it is not difficult to show that these equations
are rigorously valid for linear viscoelastic and dispersive materials provided attenu-
ation is small. i.e.. k, « k, which is generally the case. As an illustration of the efficacy of
our technique in measuring k, and k, of highly dispersive and attenuative media, we
tested random particulate composites consisting of lead spheres in an epoxy matrix.
Figure 6 shows the phase velocity as a function of frequency in this specimen. Below the
cut-off frequency, where the wavelength is large in comparison to the ball radius, the
wavespeed is weakly dependent on frequency. Again at high frequencies, where the
wavelength is small in comparison to the ball radius, the wavespeed is sensibly
independent of the frequency. Around the cut-off frequency the wavespeed fluctuates
very rapidly with increase in frequency. Here, cut-off frequency is the frequency that
corresponds to the excitation of the rigid-body-translation resonance of the spheres. [t
is emphasized that the entire dispersion curve was obtained in a single experiment.

Next the results are presented for the NDE of fibre reinforced, graphite/epoxy,
AS4/3502 composites. A [0490,0, ], laminate was tested. A static load was applied to
the specimen and transverse cracks were produced in the 90°-plies. The test was
interrupted at regular intervals and the number of cracks was determined by the edge
replication technique. The specimen was then subjected to ultrasonic investigation.
Figure 7 shows the results for tests at three different frequencies for attenuation as a
function of applied loads. Shown also are the line sketches of the edge replications at
different damage stages. A dramatic increase in attenuation is observed at all the
frequencies. Figure 8 shows that for the same test there is practically no change in
wavespeed. These results show that for the through-the-thickness measurements
attenuation is a very good damage metric while wavespeed is not.

All the above measurements of wavespeed and attenuation have been made in the
through-the-thickness direction where the crack-wave interaction is the weakest. This
interaction is strongest when a wave travels perpendicular to the crack faces. This
provided the motivation for examining the propagation of Lamb waves, which are
described next.

4.2 Lamb wave technique for the NDE of composites

When Lamb waves are propagated in plates immersed in water, the displacement of the
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Figure 7. Attenuation increases
dramatically with transverse cracks
in a {0,90,0, ], laminate at all three
frequencies tested. The extent of
damage and number of cracks are
shown in the edge replication
sketches.

two surfaces of the plate generates waves in water, hence the terminology “leaky Lamb
waves”. Since these waves travel in the plane of the plate, in-plane stiffness governs the
wavespeed of Lamb waves. Leaky Lamb waves were used by Bar-Cohen & Chimenti
(1985) for the NDE of damage in composites. They have shown that various forms of
damage can be identified by a nuil-zone measurement method. When a wave is incident
upon a plate, it results in the excitation of a- Lamb wave in the plate as well as a specular
reflection. Due to phase change in the leaky wave, the specular reflection and the leaky
wave interfere and a well-defined null zone is observed. The movement of the null zone
has becn related to the defects in their work. In our work we have adopted a different
approach. The transducers are placed such that specular reflection is avoided and only
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the leaky Lamb waves are sensed. We measured the wavespeed and attenuation of the
leaky Lamb waves.
The angle at which a Lamb wave is generated in the plate is governed by Snell’s Law,

sin (8,)/sin(8,) = c./cL, 8)

where 8, is the angle of incidence, 8, = n/2 is the angle of refraction, c,, is the wavespeed
in water and ¢, is the Lamb wavespeed. Habegar et al (1979) have shown by a rigorous
analysis that at low frequencies (wavelength > plate thickness) the Lamb wavespeed
can be related to the in-plane stiffness (E,) as

Cf=51/{P(1“’12"21)} )

where v,, and v,, are the two Poisson’s ratios for the composite plate. Since for the
cross-ply composites that we have tested, v,,v,; « 1, (8) reduces to

ct=E,/p. ; (10)
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Figure 9. (a) Reduction of in-plane stiffness, and (b) increase in attenuation of leaky Lamb
waves with damage, in three graphite;epoxy laminates.
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Thus by the measurement of the Lamb wavespeed from (7) and substituting it in (9) the
in-plane stiffness £, can be calculated. The results for a variety of graphite/epoxy
laminates (Dayal & Kinra 1987) are reproduced here. Figure 9 shows the reduction in
stiffness for three different laminate layups: [0 90,],; [0 90,],; and [0,90,0],. Let 2a be
the length of the crack which is the same as the thickness of the contiguous 90”-plies. Let
N be the linear density of the transverse cracks in the direction of wave propagation. In
the absence of a more suitable measure of damage, we define cumulative crack length L
= 2aN and use it as a damage metric. Note that four 90°-plies contribute more to the
overall stiffness of the laminate in comparison to three 90°-plies and hence their failure
results in a larger stiffness reduction. The third laminate [0,90,0], has four 90°-plies
but they are divided in two and also the laminate has four 0°-plies. Thus the stiffness
contribution of the 90°-plies is very low and hence it shows much lower stiffness
reduction on damage. The increase in attenuation for the three laminates is shown in
figure 9b. All tests were conducted at the same frequency of 0-5 MHz. The scattering
cross-section of [0 90, ], laminate is the largest (k, a = 0-45) and hence the attenuation
increase is maximum. When k,a « 1, as for the [0, 90, O], laminate (k,a = 0-06), the
wavelength is very large as compared to the crack length and the wave does not “see”
the crack and the increase in attenuation is very low.

The results obtained by the authors thus show that for the through-the-thickness
measurements the change in attenuation is a good measure of matrix cracking while
wavespeed is not. But in the in-plane measurements both wavespeed and attenuation
are sensitive measures of matrix cracks.

References

Arora A, Tangari K 1981 Exp. Mech. 21: 261-267

Baily C D, Freeman C D, Hamilton J M 1980 Mater. Eval. 38: 21-26

Bar-Cohen Y, Arnon U, Meron M 1978 SAMPE J. 14: 4-9

Bar-Cohen Y, Chimenti D E 1985 Proc. 15th Symp. NDE, San Antonio, Texas

Becht J, Schwalbe H J, Eisenblaetter J 1976 Composites 245-248

Belchamber R M, Betteridge D, Chow Y T, Hawkes A G, Cudby M E A, Wood DG M 1983 J.
Compos. Mater. 17. 420435

Blake R A Jr 1982 Proc. MICRO-DELCON pp. 30-36

Blake R A Jr 1983 Ultrasonic Image Histogram Evaluation and Enhancement, /EEE Proc. of the
6th Annyal MICRO-DELCON Conf.

Blake R A Jr, Hartman H S 1984 Compos. Technol. Rev. 6 (3): 118-123

Cantrell ] H Jr, Winfree W P, Heyman J S, Whitcomb J D 1980 Proc. 1£EE Ultrasonic Symp.
Boston pp. 1003-1005

Danict I M, Schramm S W, Liber T 1981 Mater. Eval. 39: 834-839

Dayal V, Kinra V K 1986 Proc. 3rd US Japan Conf. on Compos. Mater., Tokyo

Dayal V, Kinra V K 1987 Non-Destructive Evaluation of Transverse Cracks in Fibre-Reinforced
Composites by Ultrasonics. 16th NDE Symp., San Antonio, Texas

Dayal V,Kinra V K, Eden J G 1986 Proc. Int. Symp. Compos. Mater. Struct., Beijing (ed) T T Loo
and C T Sun pp. 899-904

Eden J G 1985 The application of ultrasonics to assess damage in composite materials, M S thms,
Texas A&M University

Firestone F A 1945 J. Acoust. Soc. Am. 17: 287-299

Habegar C C, Mann R W, Baum G A 1979 Ultrasonics 57-62

Hale J M, Ashton J N 1985 Br. J. Non-Destr. Test. 27(2): 83-87

Hayford D T, Henneke E G 11 1979 Compos. Mater. Test Design (Fifth Conf.), ASTM STP 674 (ed.)
S W Tsai (Philadelphia: ast™m) pp. 184-200

g e LR

IS

€,




432 Vikram K Kinra and Vinay Dayal

HeymanJ S, Cantrell J H 1979 NDE flaw criticality Compos. Mater., ASTM sTP 692,(ed.) R B Pipes
(Philadelphia: asT™) pp. 45-56

Kinra V K 1984 Rev. Progr. Quant. NDE Eval. (eds) D O Thompson, D E Chimenti (New York:
Plenum Publishing Corp.) B3: 983-991

Kinra V K, Anand A 1982 Int. J. Solids Struct. 18 (5): 367-380

Kinra V K, Eden J G 1984 Propagation of Elastic waves in Unidirectional Fibre Reinforced
Composites, aFosR Contract Report MM4875-84-19, Dept. of Aerospace Engg., Texas
A&M University, College Station, TX, USA

Kinra V X, Ker E L 1982 J. Compos. Mater. 16: 117-138

Kinra V K, Ker E L 1983 Int. J. Solids Struct. 19: 393-410

Kinra V K, Ker E L, Darta S K 1982 Mech. Res. Commun. 9 (2): 109-114

Kinra V K, Petraitis M §, Datta S K 1980 Int. J. Solids Struct. 16: 301-312

Krautkramer J, Krautkramer H 1983 Ultrasonic testing of materials 3rd edn (Berlin: Springer
Verlag) chap. 10-11

Kriz R D, Stinchcomb W W 1979 Exp. Mech. 19 (2): 41-49

Kriz R D, Ledbetter H M 1983 Elastic Representation Surfaces of Unidirectional Graphite/
Epoxy Composites, Fracture and Deformation Div., National Bureau of Standards,
Boulder, Colorado

Lee S S, Williams J H Jr 1980 J. Non-Destr. Eval. 1 (4): 277-285

Liptai R G 1972 Compos. Mater. Test. Design (Second Conf.) ASTM STP (Philadelphia: AsT™)

. 497: 285

Ma‘;gx R W, Baum G A, Habegar C C 1980 Tappi 63: 163-166

Musgrave M J P 1970 Crystal acoustics (San Franscisco, ca: Holden-Day)

Reifsnider K L, Henneke E G, Stinchcomb W W, Duke J C 1983 Mechanics of composite
materials (eds) Z Hashin, C T Herakovich {London: Pergamon Press) pp. 399-420

Reynolds W N, Wilkinson S J 1978 Ultrasonics 16: 159-163

Ringermacher H 1980 Proc. of 1EEE Ultrasonic Symp. Boston pp. 957-960

Sokolov S Ya 1929 Zur Frage der Fortpflanzung ultraakustischer Schwinggungen in ver-
schiedenen Korpern, eNT 6: 454-461

Talreja R, Govada A, Henneke E G II 1984 Review of research in quantitative nondestructive
evaluation (New York: Plenum Press) vol. 2, pp. 1099-1106

Tauchert T R, Guzelsu A N 1971 J. Compos. Mater. 5: 549~-552

Tauchert T R, Guzelsu A N 1972 J. Appl. Mech. 98-102

Vary A, Bowles K J 1977 Proc. 11th Symp. on NDT, Am. Soc. NDT and Southwest Res. Inst., San
Antonio, TX pp. 242~258 (Also report NASA T™MX-73646, 1977)

Vary A, Lark R F 1979 J. Test. Eval. 7 (4): 185-191

Vary A 1982 Mater. Eval. 40: 650654

Ueda M, lkudome K, Igarashi Y 1983 Trans. JSCM 9 (1): 25-30

Ulman D A, Henneke E G I1 1982 Compos. Mater. Test. Design (Sixth Conf’), ASTM STP 787 {ed.)
I M Daniel (Philadelphia: AsT™) pp. 323-342

William J H Jr, Doll B 1980 Mater. Eval. 38: 33-37

William J H Jr, Egan D M 1979 Mater. Eval. 37 (1) 43-47

William J H Jr, Lampert N R 1980 Mater. Eval. 38: 68-72

William J H Jr, Lee S S, Nayeb-Hashimi H 1980b J. Nondestr. Eval. 1 (3). 191-199

William J H Jr, Nayeb-Hashimi H, Lee S S 1980a J. Nondestr. Eval. 1 (2): 137-148

William J H Jr, Yuce H, Lee S S 1982 Mater. Eval. 40: 560-565

William R S, Reifsnider K L 1977 Mater. Eval. 35 (8): 50-54

PP

P e




e s

A NEW TECHNIQUE FOR ULTRASONIC
NOE OF THIN SPECIMENS
by
V.K. Kinra
and

V. Dayal

Mechanics and Materials Center
and
Aerospace Engineering Department

Texas ABM University
College Station, TX 77843

“inal - October 1987

Ol TR0

Acceptéd for Publication by Experimental Mechanics




VT N> D X €

©

A E @

LIST OF SYMBOLS
fourier transform of f(t)
fourier transform of g(t)
magnitude of a complex number
number of digitizing points
Reflection coefficient in medium i from medium j
sampling interval in time domain, ns
signal length, usec
Transmission coefficient for a wave incident in medium i and
transmitted into medium j
a characteristic length; half crack length or particle radius, mm
longitudinal phase velocity in specimen, mm/usec
longitudinal phase velocity of wave in immersion medium (water),
mm/usec
group velocity in specimen, mm/usec
frequency, MHz
cut-off frequency, Mhz
frequency resolution, MHz
plate thickness, mm

/-1
complex wavenumber = kl + 1k2. mm'1
wavenumber in water, real, ‘mm‘l

-1

= w/c, wavenumber in specimen, mm
attenuation coefficient, nepers/mm
integer; number of complete round trips taken by the wave across
the plate thickness

time, usec

particie displacement o

distance , Acencsion For
normalized frequency, 2xfa/c, ' ffli S §?’L__
wavelength, mm SN e ol "
normalized wavenumber, 2rfa/<c,> o
density of specimen, g/ml - ‘
density of water, g/ml SRS _
phase of a complex number LoARTT L et
circular frequency, rad/usec Bren § feemon
aggregate property of composite




1. INTRODUCTION

The classical method of measuring the speed of sound in non-dispersive
media is the time-of-flight method, see Reference1 for example. We note that
in non-dispersive media the phase velocity and the group velocity are
1dent1ca12. When the material is either dispersive or attenuative this method
breaks down and a suitable method then is the so-called toneburst method.
Here, a burst of pure tone, typically about ten cycles in duration is used;
this places a constraint on the specimen thickness; it must be thick enough so
that the toneburst reflections from the two faces of the specimen can be
clearly separated in time-domain j.e. it should be roughly five-wavelength
thick. For example, in steel at, say, one MHz frequency the required minimum
thickness would be about 30 mm. There are many situations of practical
importance where one must carry out an ultrasonic examination of considerebly
thinner specimens. for example, aircraft and aerospace structures using
graphite/epoxy or metal-matrix composites employ panels as thin as one mm.
Chang, et.a13 have developed a technique for the measurement of phase velocity
in thin laminates. They carry out an FFT of the front-surface and the back-
surface reflections of a signal. The amplitude-vs-frequency curve is
characterized by a series of resonance peaks; the peak spacing yields the
phase velocity which is the same as the group velocity, for it is assumed that
the material is non-dispersive. This method requires human analysis of data
(i1t cannot be computer automated). Further, one cannot measure attenuation by

this method. More recently Heyman4

has developed a technique called phase
insensitive toneburst spectroscopy. Although this technique yields excellent
results, 1t requires the use of rather specialized and sophisticated
transducers called acousto-electric transducers (AET) which are not yet

commercially available.
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By combining standard FFT methods with conventional ultrasonics (using
commercially available broad band piezoelectric transducers) we have been able
to develop a method by which one can measure the phase velocity, the group
velocity and the attenuation in ultra-thin specimens (sub-millimeter or sub-
wavelength in thickness). There are many situations in which one cannot
obtain a series of resonance peaks required by the method of Chang, et.a13.
Dur method works even in the absence of a single resonance peak. A detailed
description of this technique is the central objective of this paper. We will
illustrate the use of this technique on four rather disparate materials:
aluminum, an epoxy, a particulate composite and graphite-fiber/epoxy
composite. It will be demonstrated that this technique works equally well for

thin or thick specimens, and for dispersive as well as non-dispersive media.
2. THEORY

Consider an infinite elastic plate immersed in an elastic fluid
(water). A lLagrangian diagram indicating the space-time location of a
wavefront which occupted the position x=0 at time t=0 is shown in Fig. 1. A
plane-fronted finite-duration pulse, ray 1, is normally incident on the
plate. This results in an infinite series of reflected and transmitted
pulses. The expressions for the reflection and transmission coefficients of a
displacement wave for perfectly elastic media may be found in Achenbach's
book.

Let the displacement in the incident field be given by

inc _
u fo(ut - kox)




L aaass w

where fo(s) = 0 for s<0. (1)

For the time being w and ko can be any two constants connected by o
= u/ko. where c, is the phase velocity of wave in water. Later v and kg will
be identified with the circular frequency and wavenumber of a monochromatic
harmonic wave. The displacement field along the various reflected rays may be

written as
U = Rlzfo(s-sz); 5, = 2k°a

u = T12R21T21fo(s-56); S = 2k°a + 2kh (2)

10 _ 2 . =

etc.

Here, s = ut + kox, h = b-a is the plate thickness, R is the reflection

ij
coefficient in medium i from medium j, Tij is the transmission coefficient for
a wave incident in medium i and transmitted into medium j, k=w/c, c is the

phase velocity in the plate, and

p,.C pC
0% ..
R12 9Co * o€ R21’
2p.C :
12 ooy v oc -2 T, (3)
5

v



where o_ and o are, respectively, the density of water and the plate

0
material. The entire reflected field, W o= u2 + u6 + u10 + ....®, May be

written as

m- 1
= Rypfols-sp) + TR T 2 far fols=sp) (4)
Sm = 2 koa + m 2kh

In an exactly analogous manner, one can write down the expressions for

the transmitted pulses. With s = ut - kox

u o= 12 21f (s- 54); S4 *© h(k-ko)
8 2
U = Typ Ry Tpy Fols-sg)i Sg = h(3k-k) (5)
u12 T R f (s-Sy,): Sy, = h(5k-k_*
12 721 21 0 127* °12 o
etc.
The total transmitted field may be written as
t = 2m
wt =T T 2 fal folssp)i sy = b L(2m1) koky] (6)

In eqs (4) and (6) m is the number of complete round trips taken by the wave

across the plate thickness h.

The Fourier transform of a function f(t) is defined as

——— — -
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F(w) =,%ﬂ _{ f(t) 8t, - e<u<e (7a)
with the associated inverse transform given by,
1 T fwt
f(t) =5 _£ F(w) e'“du (7b)
2.1 Analysis for Thick Specimens
We first consider the case of a relatively thick specimen such that
various pulses in Fig. 1 can be clearly separated from each other in the time-
domain. Let f(t) be the signal corresponding to ray 2 and g(t) be the signal

corresponding to rays 2 and 6 combined sensed by a transducer at x=0. (This is

the so-called pulse-echo mode). Then
F(t) = Ry, folut - 2ka) (8)
and g(t) = 12 21 21f (wt - 2k°a - 2kh) + f(t). (9)

*
Let F (w), G*(w) and Fo*(w) be the Fourier transforms of f(t), g(t) and f(t),

respectively. Then,

-12‘( a *
-12k a
6 (u) = RppFa(w) e O 1 - T,T, 82N (11)
6 (w 512kh
and o) .y Ly, i (12)

Fw)




It is emphasized that in the foregoing it is assumed that the plate
behaves in a perfectly elastic manner i.e. the wavenumber k 1{s real and

c=w/k is a constant. The key term in egs (l1) and (12) fis glzkh o,

- *
§12M/C thys, in eq (11) if one plots |6 (w)| vs w 1t will be
characterized by a series of resonance peaks whose spacing is given

by a(2hw/c) = 2a, or in view of w = 2x2f
c = 2h af (13)

Measurement of ¢ in aluminum using eq (13) is illustrated in Fig. 2. Here

Flu) = |F (w)] and 6(w) = |6 (u)]. Note that G(w) consists of the
transducer response, F(w) superimposed by an oscillation due to e'iZh“’/c
term.

A further improvement in the measurement method can be achieved by
plotting (G (w)/F (w) - 1), eq (12). This is illustrated in Fig. 3. By
taking out the shape of the transducer response we are left with oscillations
due to the constructive and destructive interference between the front-surface
(ray 2) and back-surface reflections (ray 6).

Even though eq (12) is derived for an elastic material it is rigorously
valid for a linear viscoelastic material provided the damping is small i.e. in

k=k1+1k2, kz/k1<<1. This elementary proof 1is deferred to the appendix. We

rewrite eq (12) as

éiZkh = 10

- (6" (W) /F () - 1)/T Ty, = Me (14a)

Then, ky(w) = - o/2h

-

— - e~k
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and
kz(w) = {(In M)/2h, (14b)
where M= l((G*(w)/F*(W)) - 1)/T12T21|

Since kl(w) = w/¢c and w = 2»f

c = ??§§%7 and k,(w) = (1nM)/2h. (15)

These are the desired equations for calculating the phase velocity and the
attenuation.

Now consider the transmitted field for a thick specimen. Two

measurements are made. In the first, the specimen is removed from the water
path i.e. the wave travels solely through water. Let the receiving transducer
be located at some x = 1>b.  Then u'™(1,t) = f(t) = f_(ut - k1)  The
specimen is now inserted in the wavepath and the signal due to ray 4 alone is

recorded. Thus, u(1,t) = g(t) = T ,Tpfolut - k1 - 2k a - kh). Then,

* -i(kh+k_h)
Slod oy 10 © (16)
F ()
« ikoh
If E;iﬂlg—-——- is set equal to Me'® then
kl(“) = - ¢/h (17a)
and ky(w) = (1n M)/ (17b)
9
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where M= |30 /1157
w

(w)

F

Substituting k, = 27f/c, we get

¢ = %%:76 and k,(u) = In M/h (18)

Another variation of this technique is when signals for both rays 4 and 8
are quite large. Then the following approach yields more accurate results
because the data reduction can be done from a single experiment. Let f(t) and
g(t) be the signals corresponding to rays 4 and 8, let F*(m) and G*(w) be

their Fourier transforms then

*
G lo) | g2 gidkn (19)
F ()

As before, if we set G*(w)/F*(w) Rgl = Mei° then, Eq. (15) can be used to
calculate the wavespeed and attenuation. In the following for brevity, these
methods will be referred to as Second/First method.

We note that this method is equally effective for dispersive media. From
eq (14) one plots kp vs. w. A secant to the curve yields inverse of the
phase velocity (phase slowness). For dispersive media a quantity of interest
is the group velocity. This is the speed with which energy propagates in a
medium, cg = au/akl; this too can be computed from the phase plot, and eq
(14b) yield frequency dependent attenuation. finally, we f1introduce a
normalized attenuation kzx. This 1is the attenuation of a wave over one
wavelength. The motivation for this particular normalization is that for a

Tinear viscoelastic material kzx is independent of frequency.

10
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2.2 Analysis for Thin* Composites
The total reflected field comprising rays 2, 6, 10, 14 ..... = at x=0 is
given by eq (12) as

u (o.t) = g(t) = Ry f  (wt-2k )

2 m-l)

Note that ray 2 cannot be used as the reference signal. One has to conduct a
separate experiment as follows: the thin coupon is replaced by a thick coupon
with the front surface precisely at x=a. Let the front surface reflection be

labeled f(t), then
f(t)

-12k od *
128 ° Fo (@)

F*(w) = R

2(m 1)

8 (w) = F (w) + TypRy Ty 2 R o ().

-[2k a + m 2]
e (21)

Let ;o = RE &N e, (22)

*In this paper the qualifiers "thick" and "thin" are used in the following
sense. When various reflections or transmissions corresponding to a short-
duration pulse can be separated in the time-domain, the specimen is considered
thick. But the duration of the pulse depends on the center-frequency of the

transducer. Hence the use of the word thick is quite arbitrary.

11
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* Ty,T

G 12721 & m
Then, - -~ 1= 2
' R12R21 %=1

Observing that for |Z] < 1, (1-2)"! = 142422 + ..., and defining

R12R21 6% (w)
g = z=====( -1}  we get

12721 F ()

1=t (23)

From Z one can readily calculate the complex-valued wavenumber k(w).

For completeness we include here a variation of this method. Suppose a
thick coupon to obtain a reference signal is not available (this difficulty
will be discussed later). One can then use a thick specimen of some other
material; we have used a block of aluminum. Let the acoustic impedance of
this  material be po,c,. Let the  front-surface reflection be

f(t) =R fo(wt-Zkoa) where the reflection coefficient
R = (ooc° - o,C,)/(poco +0,c,), and g(t) is still given by eq (18). As

before with
o - MR G (24)
+* 1]
12721 12 F (w)
2= 8, ekh o 2/(140) (25)

In the following for brevity these methods will be referred to as

A11/First method.
We now consider the transmitted field. Here a Second transducer is used
as a recefver at some x = 1>b, To obtain a reference signal the specimen fs

removed and the signal through water is recorded.

12




£(t) = u'"C(,t) = F (wt-k )

Let g(t) be the total transmitted field, rays 4, 8, 12, ...~ then from eq (6)

_ v p2m
9(t) = T),T,, mZO Roy folut-k 1-hi(2m1)k-k }) (26)
2 (k-k )
G*(E) ) T12T21e o (27
L 2 Z12kh )
F (w) 1-R;, &

We note one major difference between egs (23) and (27). Unlike eq (23), eq
(27) is a quadratic in Z = exp(-ikh). This presents some additional numerical

problems. These are discussed next. Equation (27) may be rewritten as

2

15+ 2y - D° =0
where
T12T21 ()
Y = g = (28)
21%0 G (w)

7 = exp(-ihko)
2
Dy = 1/Ry

and k, is the wavenumber in water. Since the phase velocity in water is known,
Zo is known a priori. If the acoustic impedance of the plate, pC, was known,
one could calculate 713 and R1j. However, ¢ is precisely the unknown we are
seeking to measure. This problem could be solved by a simple iteration
procedure. An approximate phase velocity was initially used in the algorithm
to estimate T,J and R,J. The quadratic equation (28) is solved and two roots

13




of Z are obtained. The correct root is chosen based on the fact that the
phase of Z decreases as frequency increases (for the other root the reverse is
true). This velocity is used for the next iteration cycle. This procedure
converges very rapidly. When we purposely supplied an initial phase velocity
with a very large error (30%), the convergence was found to occur in about
five fterations. More realistically, the wavespeed can be estimated to within
five percent. Here convergence to within 0.01 percent occurs within three or
four iterations. When the value of ¢ obtained by this procedure was
substituted back into eq (28) to calculate attenuation, koA was found to be an
oscillatory function of frequency for a linear viscoelastic material, namely,
an epoxy. Now, it is well-known that for a such a material kzx is a
constant. The oscillating nature of kzx could, however, be readily explained
as follows. A detailed numerica)l examination of eq (28) revealed that the
calculation of kzx is very sensitive to small variation in the phase velocity
¢c. The oscillations were due to the fact that the measured velocity was
different from the true velocity. This problem could be resolved in the
following manner. If one takes the absolute value of both sides, eq (25) can
be re-written as follows:

T,,T *
4xhf 1 F
cos —1%— + 3 ( lg 21,2 F (o) | % [Rg1 LU -—fl—aF-] (29)
21 6 (w) RS,

2

where q = 2Zh kzx/c.

The terms in eq (29) have been separated judiciously as follows. The left
hand side (LHS) is a function of wavespeed only while the right hand side
(RHS) depends on both, the wavespeed as well as the attenuation. The RHS is a
sum of two exponentfals and, therefore, is not an oscillatory function of

frequency f. On the other hand, the LHS is the sum of a cosine function of

14




AL

frequency and .he experimentally determined F*(u)/G*(u) which was found to be
oscillatory. Now if the correct value of ¢ is not used in eq (29) the periods
of the two terms do not match and the oscillatory parts do not cancel each
other as they would for the correct value of ¢. With this in mind, the RHS is
viewed as the reference curve and a numerical search is made around the value
of ¢ obtained by the iterative procedure described earlier, to minimize the
root-sum-square of the LHS. This fixes ¢. Now we view the LHS as the
reference curve and conduct a numerical search over a range of kzx so as to
minimize the root-sum-square between the LHS and the RHS. This fixes kj.
Finally, it is noted that the theoretical procedures developed in this
section are equally valid for both the longitudinal as well as the shear

disturbances.

3. EXPERIMENTAL PROCEDURES

3.1 Measurement Procedures

A schematic of the apparatus is shown in Fig. 4. The heart of the system
is a pair of accurately-matched, broad-band, water-immersion, piezoelectric
transducers. An experiment is initiated at time t=0 by a triggering pulse
produced by a pulser/receiver; the pulse is used to trigger a digitizing
oscilloscope; simultaneously the pulser/receiver produces a short-duration
(about 100 ns) large-amplitude (about 200 volts) spike which is applied to the
transmitting transducer. In the reflection mode it also acts as a receiver.
The received signal is post-amplified (to about one volt) and then digitized
with maximum sampling rate of 100 MHz (or 10 nanoseconds per point). To
reduce the ubiquitous random errors, each measurement s averaged over a
sample size of 64. A laboratory computer controls all operatfons of the

digital oscilloscope through an IEEE bus. The bujlt-in signal processor of

15




the oscilloscope performs FFT on the acquired signals and the relevant parts

of the data are then transferred to the computer for further analysis.

3.2 Calibration Procedures

Since our objective in this research is to estimate damage in composite
materials from a measurement of the ultrasonic parameters, accuracy is of
prime importance. For example, one percent error in estimating the phase
velocity may, for some typical laminates, correspond to a ten percent error in
estimating the remaining fatigue 1ife. At present, we can measure velocity in
monolithic materials to an accuracy of 0.1%, and velocity and attenuation in
heterogenous materials to an accuracy of 0.2% and 2%, respectively. In order
to achieve this accuracy the measurement system was subjected to systematic

calibration procedures; these are described next.

3.2.1 Sampling Interval

The analog signal from the transducer 1is digitized at a specified
sampling interval by the digitizing oscilloscope. The object of this study
was to determine an upper bound on the sampling interval below which the
harmonic distortion was considered acceptable. We quote here the limits on

7, “If the sampling

the sampling interval as specified by the sampiing theorem
interval T s chosen: equal to 1/2f., where f. 1is the highest frequency
component of the si;nal. aliasing will not occurf. Aliasing is defined as
“The distortion of the desired Fourier transform of a sampled function". An
experimental verification of this statement is given Here. Figures 5 and 6
show the amplitude and phase response of a 10 MHz transducer at sampling
intervals of 10 nS (100 MHz), 20 nS (50 MHz), 40 nS (25 MHz), and 100 ns (10

MHz). The highest frequency content of this signal is about 10 MH2 and so the
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sampling interval of 50 nS would be acceptable from the viewpoint of
aliasing. It is obvious from Fig. 5 that at 10 nS or 20 nS sampling intervals
the frequency content of the signal is essentially the same. However, at 40
nS sampling intervals significant distortion of the amplitude is observed; but
the phase remains relatively unaffected. At 100 nS, both the amplitude and
the phase plots are completely distorted. This would come as no surprise for
here we are sampling only one point per cycle. In this work we have used

either 10 or 20 nS sampling interval.

3.2.2 Frequency Resolution v
It is seen from eqs (15) and (18) that wavespeed can be calculated if the
slope (¢/f) of the phase vs. frequency curve can be obtained. The FFT

algorithm provides the real and imaginary components of the transformed

-

signals and from these the phase is calculated. Computer can provide the
phase angle in the range of - /2 to + n/2 from which the angle in the range
of 2 can be deduced very easily, depending on the quadrant in which the
phaser lies. Hence we obtain a sawtooth type phase vs. frequency plot. It
was observed that for the signal under consideration, phase increases
monotonically with the frequency. Thus the sawtooth plot has to be converted
to a continuous phase vs. frequency curve before its slope can be obtained to
calculate the wavespeed. The computer algorithm developed by us tracks the
rotation of the phase vector and 2» radians are added to the phase each time
the vector completes a cycle.

Let the sampling interval be T and the total number of sampled points be
N. The total length of the signal is T° = (N-1)T. Let the frequency

H resolution be af, then af = 1/T = 1/(N-1)T. The consideration of aliasing

fixes T. Hence N is the only parameter that can be adjusted to obtain the

17




desired frequency resolution. For example, if the desired
af=0.05 MHz/point, T is 10 nS, then N=2000 or 2048. The length of a signal
can be readily increased simply by adding zeros at the end of the signal. Of

course, this is accompanied by an increased computation time.

3.2.3 Transducer Response

The frequency response of a transducer with a center-frequency of 10 MHz
is shown in Fig. 7. Experience indicated that satisfactory measurements can
be made over a frequency range (or band width) given by 25% of the peak
amplitude response as shown in the figure. It was observed that the phase vs
frequency curve over this range is a straight line; outside it becomes non-

linear.

4, RESULTS AND DISCUSSIONS

4.1 Wave Propagation in Non-dispersive Media

The main objective of this work is to develop techniques suitable for
very thin specimens. Therefore, we Subjected our techniques to the following
critical test. A thick aluminum plate (2.807 * 0.0025 mm) was first tested
using the conventional toneburst method. Then the thickness was gradually
machined down to 0.258 mm (about 10 mil, a very thin foil) in five steps. In
non-dimensional terms the thickness was reduced from about 4.4 to 0.4
wavelengths; a frequency of 10 MHz was used. At each step ¢ was measured. We
could have used five different samples. Instead we adopted the foregoing
procedure fn order to ensure that we are always testing exactly the same
materfal. The density was measured by the Archimedes principle. Our estimate
of the error in density 1s ¢ 0.015%. The resuits are presented in Table 1.

The first measurement was made using the conventional toneburst nethoda'g,
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The time-domain signal is shown in Fig. 8(a). A particular peak (say the
fourth peak) near the center of the toneburst is selected as the reference
peak. The twice-transit-time, 2h/c could be measured to an accuracy of 1
nS. Our estimate of error in the phase velocity 'is 0.2%; see Ref.10 for a
detailed error analysis. In the second measurement the toneburst was reduced
to about one cycle; see Fig. 8(b). Note that the pulses can be clearly
separated. The Second/First method, eq (15) was used to analyze this data.
Since only the first two pulses are needed for data analysis, the remaining
pulses are electronically gated out or nulled. In the third measurement, the
data analysed remains the same i.e. Fig. 8(b). However, the A11/First method,
eq (27), is used. In other words, g(t) is now viewed as the sum of all
transmissions. For the remaining measurements the specimen was gradually
machined down. Al11/First Method was used to analyze the data. The pulses for
h=1.686 mm are shown in Fig. 8(c). Note that the conventional toneburst
method can no ionger be used; though both methods developed in this work can
be used, we used the Al1/First method. The pulse for the next three
thicknesses, h=1.001, 0.613 and 0.258 mm are shown in Figs. 8d, B8e, 8f,
respectively. Because of the reduced thickness the pulses cannot be separated
in the time domain. Therefore, even the Second/First method cannot be used;
here we have to use the A11/First method. For the thinnest specimen the round
trip time is only 82 nS; the pulse duration is roughly 200 nS. This given
rise to what appears to be "ringing" in Fig. 8f.

With reference to Table 1, the average of all the measurements is 6.342
mm/usec t 0.25%. We conclude that the Al1/First method developed for ultra-
thin (sub-wavelength) specimens and the Second/first method for moderately
thin (about one wavelength) specimens yield results which agree to 0.25% with

the conventional toneburst method. (We hesitate to make gbsolute claims on
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accuracy because for the given piece of aluminum we do not know the true value
of the phase velocity).

The idea) method for “calibrating" a new experimental technique is to use
it to measure a quantity which is known with a ten times better accuracy.
Unfortunately, the National Bureau of standards has not yet developed a
standard for acoustic velocity (or elastic modulii). Our laboratory did,
however, participate in a six-laboratory ASTM round-robin conducted by Dr.

Alan Nolfenden11

» (Department of Mechanical Engineering, Texas A8M University,
College Station, Texas 77843). This allowed us an opportunity to compare our
error-estimates with those of the others. The material tested were two
nickel-based alloys; see Table 2 for a material and geometric description.
Since these specimens are very ve%y "thick" (several wavelengths), the

Second/First method, eq (15), was used. Furthermore, shear velocity was also

measured. Here a shear (or Y cut) transducer was directly cemented onto the
metal specimen using a shear couplant. Ignoring the "main bang," the
remaining reflected signal was collected. From the measurements of the
longitudinal and shear velocity, c; and cp, and density p, the eiastic
constants £ and v can be readily calculated. The results of the round-robin
test are presented in Table 3. Reasonably good agreement (within 2.5%) is
observed between the results obtained in different 1laboratories using
different techniques.

Next, we have tested our experimental method on a medium which is non-
dispersive but attenuative. An epoxy (EPON 8281) was selected for this
purpose. The results are presented in Table 4. Note that three frequencies,
spanning nearly a decade, were used. The phase velocity measured by the
toneburst method on a thick specimen is 2,915 mm/usec and agrees very well

with that measured with the Al1/First technique.
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4.2 MWave Propagation in Dispersive Media

Finally, we have tested our experimental procedures on a material which
is simultaneously highly dispersive as well as highly atteruative. Towards
this end we tested a random particulate composite consisting of lead spheres
in an epoxy matrix. These composites have been described in 12'13.
Transducers with 0.25 MHz center-frequency were employed. Second/First method
in through-transmission mode, eq (16), was used.

Kinra13 has shown that wave propagation in these composites occurs along
two separate branches: (1) The low-frequency, slower, acoustical branch along
which the particle motion is essentially in phase with the excitation and (2)
The high-frequency, faster, optical branch along which the particle motion is
essentially out of phase with the excitation. The two are separated by a cut-
off frequency which corresponds to the excitation of the rigid-body-
translational resonance of the heavy inclusions; this occurs when kia = 0(1),
where a is the inclusion radius. Around the cut-off frequency both the phase
velocity and the attenuation change dramatically with frequency. This is what
makes this composite such an interesting material to study using our technique
which was developed especially for dispersive media.

The results for a dispersive material are presented now. In fig. 9

F*(u) is the rece{ggd signal with the specimen removed while G*(w) is the
signal with the spééimen in place; ¢ is the volume fractfon of inclusions.
The dip in the amplitude of G*(u) corresponds to the cut-off frequency. The
present measurement, f.=0.21 MHZ., agrees quite well with the earlier

leasurenentlz

using the conventional tone-burst method. We now introduce a
normalized frequency Q= kla = 2afa/c1 and a normalized waverumber

£ = <kl> as 2:fa/<c1> where < > refers to an aggregate property of the
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composite (an ensemble average). Fig. 10 shows the frequency vs wavenumber

dlz. along the acoustical branch at low frequencies the

plot. As expecte
behavior is non-dispersive; a straight line fitted through the data points
passes through the orgin (<¢:1>/c1 = 0/g). Same was noted at high
frequencies along the optical branch. These two observations serve as
critical checks on the accuracy of our measurement. The normalized phase
velocity is given by the slope of the secant, <c1>/c1 = g/¢, and the group
velocity is given by the slope of the tangent, <cg>/c1 = da/dg. The
discrete toneburst data from the earlier worklz’“ is also plotted; the
agreement is considered quite satisfactory. The present technique is
tremendously faster; the entire dispersion and attenuation curve is produced
jn a single experiment. Another major advantage of this method is as
follows. When one uses the toneburst method, each point suffers a scatter due
to random errors; see Fig. 10. In the present method the whole curve may
shift up or down but the shape of the curve will not be altered by the random
errors. Here we are mainly interested in the shape of the dispersion curve.
Fig. 11 shows the normalized phase velocity versus trequency. The arrow
labelled HASHIN is the velocity calculated from the lower (appropriate) static
bound due to Hashin and Shtrikmanls. The agreement between the theory and the
low-frequency results is considered quite satisfactory. As g increases the
effective inertia of the lead spheres (~ow2) increases and the phase velocity
decreases. At very high frequencies (it is conjectured) the inertia becomes
so0 large that the spheres become essentially motionless. Thus they no longer
contribute to the inertia of the composite as perceived by the effective
wave. Hence the velocity increases dramatically across the cut-off freguency

and becomes frequency-independent at very high frequencies. Fig. 11b shows

the group velocity i.e. the speed with which energy flows in a composite. As
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expected, the group velocity 1is essentially constant at 1low and high

frequencies; around the cut-off frequency, 2., it undergoes large

c*
fluctuations. Theoretically, cg~o at two points around the cut-off
frequency. Perhaps the most interesting feature is that the group velocity
becomes negative around 2.» i.e. as the wave propagates in the positive x-
direction, the energy flows in the negative x-direction. In Fig. 10 this
corresponds to those points on the curve where the slope is negative.

In Fig. 12 we have plotted attenuation versus frequency. The peak in the
curve defines the cut-off frequency. For comparison kzx for the neat epoxy

alone is 0.13 which is negligibly small compared to the peak attenuation.

Thus all of kzx may be attributed to the scattering effects.

4.3 QNDE of Damage in Composite Materials

We now demonstrate the application of our technique to fiber-reinforced
composite materials. Graphite/Epoxy AS4/3502 crossply 106/904/02]S laminates
were tested. These were subjected to monotonic tensile loading. As a result
transverse cracks develop. Edge replication was made to obtain a record of
the transverse cracks. The loading was interrupted at several points along
the load axis, the coupon was subjected to an ultrasonic examination and the
loading was resumed. The Second/First method in the reflection mode, eq (195),
was used. In Fig. 13 we have also shown the portion of the edge replication
which is insonified by the ultrasonic beam. The number of cracks seen by the
beam 4s also listed. Note that we have not plotted the attenuation kzx but
rather the changes 1in kzx caused by this damage. To guard against for
fortuitous results three different frequencies were used, namely, 2.25, 5.00

and 7.50 MHz. We note that attenuation changes quite significantly and
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monotonically with the number of transverse cracks. We also note that in the
range of frequency tested, the attenuation decreases with frequency. This may
be attributed to the fact that these experiments were conducted at kja=1.23,
2.70 and 4.02, where a is the half-crack-length, at 2.25, 5.00 and 7.50 HHz,
respectively. Fig. 14 shows the longitudinal phase velocity at the same three
frequencies. Within the errors of measurement, +0.2%, the phase velocity
remains constant with damage. This is not at all surprising, in view of the
fact that here the wave-vector (or the particle displacement vector) is
parailel to the crack face i.e. the crack-wave interaction is very weak. Thus
we conclude that for the present case while the attenuation is a good measure

of the damage, velocity is not.

5. CONCLUSIONS

We have described a new experimental technique which can be used to
measure phase velocity and attenuation of ultrasonic waves in very thin plates
(down to a thickness which is three orders of magnitude smalier than the
wavelength). We emphasize that in the development of this technique we have
taken a "black-box" approach 1.e. it would work for any material so long as it

behaves in a linear viscoelastic material and the attenuation is not large.
6. ACKNOWLEDGEMENTS
This research is supported by the Air Force Office of Scientific Research

Contract No. F49620-83-C-0067. The continuing encouragement of Major Glasgow
and Major Haritos is gratefully acknowledged.

24




APPENDIX

Consider one-dimensional monochromatic, time-harmonic wave propagation

1(ut-kx).

along a rod made up of a linear viscoelastic material, e At any

frequency w the complex-valued wavenumber 1s k(w) = kl(w) + 1k2(w). If

attenuation is small the phase velocity ¢ = u/kl; kz is the attenuation i.e.
-k, x
the amplitude of the wave decays as e 2 . Now suppose a pulse is propagating

down this rod and is given at x=0 by f(t).

Let
Flo) = o5 T f(t) @%tar (A 1)

Then
f(t) = o5 [ F () et (A 2)

For the sake of this discussion f(t) may be viewed as an infinite sum of

wavelets of the type,

f(r) = (FLgley oot (A 3)

Consider a propagating monochromatic ‘“wavelet" of complex-amplitude,

*
F (w)dw _{(wt-kx)
e .
/7én

‘wavelets" at x=0. Furthermore, at some arbitrary x the wavelets may be

In eq (A3) f(t) may be viewed as an infinite sum of such

summed up to yield

g(t) = I’ i §uzau alkxy  glut

25




If G*(w) is the Fourier transform of g(t) then

* * -
6 (w) = F () 8%
or
*
G (w - éikx
.;i_l =
F(w)
We have shown, therefore, that eq (12) which was originally derived for a
perfectly elastic material is valid for a linear viscoelastic material
provided the attenuation is small (kp/ky < 0.1) which is generally the case
with engineering materials and certainly is the case for all materials tested

during this work.

REFERENCES

1. T.R., Tauchert, and A.M. Guzelsu,, "An Experimental Study of Dispersion of
Stress Waves in a Fiber-Reinforced Composite," ASME Journal of Applied
Mechanics, 39, 98-102 (1972).

2. H. Kolsky,, "Stress Waves in Solids," DOVER (1953)

3. FfF.H. Chang, J.C. Couchman, and B.G.W. Yee, "Ultrasonic Resonance
Measurements of Sound Velocity in Thin Composite Laminates,” J. Comp.
Matl. 8, 356-363;(0ct. 1974).

4. J.S. Heyman, "Phase Insensitive Acoustoelectric Transducer," J. Acoust.
Soc. Am., 64(1), 243-249 (July 1968).

5. J.D. Achenbach, "Wave Propagation in Elastic Solids," North-Holland
Publishing Company (1973).

6. H. Kolsky, "The Propagation of Stress Pulses in Viscoelastic Solids" The
Philoscophical Magazine, 8(1), 693 (Aug. 1956).

7. E.0. Brigham, "The Fast Fourier Transform," Prentice Hall (1974).

26




10.

11.

12.

13.

14.

15.

V.K. Kinra, M.S. Petraites, and S.K. Datta "Ultrasonic Wave Propagation
in a Random Particulate Composite,* Int. J.Solids Structures, 16, 301-312

(1980).

V.K. Kinra, and A. Anand, "Wave Propagation in a Random Particulate
Composite at Long and Short Wavelength," Int. J. Solids, Structures,
18(5), 367-380 (1982).

V.K. Kinra, and E.L. Ker, "Effective Elastic Moduli of a Thin-Walled
Glass Microsphere/PMMA Composite,” J.Comp. Matl, 16, 117-188 (Mar. 1982).

A. Wolfenden, M.R. Harmouche, G.V. Blessing, Y.T. Chen, P. Terranora,
V.K. Kinra, V. Dayal, J.W. Lemmens, R. Phillips, J.S. Smith and R.J.
Wann, “Dynamic Young's Modulus Measurements in Nickel-Based Alloys: Six
Methods," to appear, J. Testing Evaluation.

V.K. Kinra, and P.N., Li, "Resonant Scattering of Elastic Waves by a
Rand?m Distribution of Inclusions," Int. J. Solids Structures, 22(1), 1-
11, (1986).

V.K. Kinra, “Dispersive Wave Propagation 1{in Random Particulate
Composites,” Recent Advances in Composites in the United States and
Japan, ASTM STP 864, J.R. Vinson and M. Taya, Eds., 309-325 (1985).

V.K. Kinra and C.Q. Rousseau, "Acoustical and Optical Branches of Wave
Propagation: Some Additional Results,” Proc. Multiple Scattering of Waves
in Random Media and Random Rough Surfaces, The Pennsylvania State Univ.,
tEd. V.K. Vardan and V.V. Vardan, 603-613 (1985).

2. Hashin and S. Shtrikman, "A Variational Approach to the Theory of The

Elastic Behavior of Multiphase Materials," J. Mech. Phys. Solids, 11,
127-140 (1963).

27




TABLE 1. Test Results on Aluminum Sample

Material: Aluminum

Wave Type: Longitudinal

Mode: Transmission
Frequency: 10 MHz

Density: 2.8177 £ 0.0004 g/m

h h/x c a/C Technique Reference
mm mm/usec % . Figure
2.807 4.4 6.3572 Toneburst 8a
2.807 4.4 6.3239 0.013 Second/First 8b
2.807 4.4 6.3275 0.010 A1l /First 8b
1.686 2.7 6.3461 0.040 A1l /First 8c
1.001 1.6 6.3538 0.030 Al11/First 8d
0.613 0.96 6.3594 0.130 A11/First Be
0.258 0.4 6.3231 0.140 AY1/First 8f
|
1
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TYABLE 2: Results of ASTM Round-Robin Tests of Ni based alloys

Sample 1 : INCONEL ALLOY 600

Composition: Ni 37.46, C 0.01, Co 14.38, Nb 4.71, Ti 1.46, Fe 41.98
Test Frequency: 5.0 MHz

Mode: Reflection

Sample 2 : INCOLOY ALLOY 907
Composition: Ni 74,91, Cr 15.48, C 0.08, Fe 9.53

SAMPLE h o <1 Cs 3 2 v
mm g/ml mm/usec  mm/usec GN/m
1.2" 6.263 8.371 5.872 3.161 216.9 + 0.14% 0.2960 + 0.20%
1.4 6.365 8.373 5.877 3.163 216.6 + 0.15% 0.2960 + 0.20%
2.1 18.848 8.267 5.273 2.7308 163.0 + 0.26% 0.3153 + 0.18%

* The first digit (1 or 2) refers to the alloy while the second digit (1-4)
js merely to identify different physical specimens.

29




e

e
A tadng

—

oo Ay o

TABLE 3: Comparison of ASTM Round Robin Tests for the Young's Modulus, E

SAMPLE/LAB 1.1 1.2 1.3 1.4 2.1 2.2 2.3
1 218.0 216.9 218.5 - 161.5 159.9  157.2
218.0
218.1
2 210.5 209.2 - - 164.1 - 155.7
3 218.8 216.0 217.5 162.0 -
217.0 - 161.8 - 158.4
216.2 160.8
217.3
4 212.0 - 205.0 - 156.0 - 172.0
5 215.6 - 214,2 - 156.0 - 162.0
6{This Work] - 216.9 - 216.6 163.0 - -
7 203.0 - 210.3 - 156.8 - 155.8
158.0
Units for above values: GN/m2

Techniques: -

LAB.
LAB.
LAB.
LAB.
LAB.

1,
3
4
5
6

2, 7

Free-Free Beam
Impulse Fourier

Pulse-Echo-Overlap Ultrasonic

Piezoelectric Ultrasonic Oscillation (PUCOT)

This work




TABLE 4: Test Results on Epon 828-7 Epoxy

Material: Epon 828-Z epoxy
Wave Type: Longitudinal
Mode: Transmission

Specimen thickness 1.869 mm + 0.0025
Specimen density 1.2069 * 0.0004 g/m}

Test Frequency  Wavespeed P ka2 P Technique
MH2 mm/usec X %

1.0 2.874 0.1 0.1340 1.4 Al11/First

5.0 2.884 0.14 0.0924 1.5 Al11/First

10.0 2.915 0.08 0.0975 1.0 A11/First

10.0 2.915 0.24 0.0979 2.2 Toneburst
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List of Figures
Various reflections and transmissions from a plate immersed in
water.

Magnitudes of Fourier Transforms of f(t) and g(t) when pulses can be
separated

Magnitude of G*(u)/F*(w) -1, from Fig. 2. Resonance spacing can be
measured easily from the zero line crossings.

Block diagram of the experimental set up.

Amplitude response of a 10 MHz transducer at different digitizing
intervals.

Phase response of a 10 MHz transducer at different digitizing
intervals.

Useful frequency range of a 10 MHz transducer.

10 MHz signal through aluminum plates of different thickness. (a) is
for toreburst Others are for a single pulse of signal. Plate
thickness given on each signal.

*
Magnitude of F (w) {FFT of signal through polystyrene delay rod] and
*
G (w) [FFT of signal through polystyrene and Lead/Epoxy specimen].

Note the dip in amplitude at the cut-off frequency, fc.

Frequency; o = kla and wavenumber; ¢ = <k1>a curve for a dispersive
Lead/Epoxy specimen. Circled points are data from reference 12-14.

Normalized phase velocity and frequency curve for the dispersive
Lead/Epoxy specimen.
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Fig.

Fig.

Fig.

Fig.

11b Normalized group velocity and frequency curve for Lead/Epoxy

12

13

14

specimen.

Normalized attenuation and frequency curve. Note a very high
attenuation (large energy absorption) due to dispersion at the cut-
off frequency, Q.-

Attenuation increases dramatically with transverse cracks in Gr/Ep,
|°69°4°2]s laminate at all three freguencies tested. Extent of

damage is shown in the edge replication sketches.

Longitudinal wavespeed variation at three different frequencies with
transverse cracks in a Gr/Ep, [0,9040,1¢ laminate.
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Ultrasonic Nondestructive Testing of Fiber Reinforced
Composite Materials

VINAY DAYAL* AND V. K. KINRA™ J. G. EDEN®
Texas A&M University General Dynamics
College Station, Texas, U.S.A. Fort Worth, Texas, U.S.A.

ABSTRACT A fully computerized technique for the measurement of

wavespeed and attenuation has been developed. The tech-
nique can be applied to a thin specimen . It has been used to me-
asure damage in specimens made of Magnamite AS4/3502 Graphite/
Epoxy. It has been observed that attenuation is a reliable mea-
sure of damage due to microcracks. To the best of our knowledge
this i3 tne first technique which ¢an be used to interrogate very
thin specimens.

INTRODUCTION It 1is well known that fiber-reinforced composite

materials develop a complex damage state when sub-
jected to mechanical or thermal loading. The residual strength or
fatigue 1life depends upon the current state of damage. When the
damage occurs, 1t has two effects upon the propagation of a mech-
anical wave through the composite:1.It affects the stiffness and,
therefore, the speed of wave propagation; 2.It increases the
attenuation of the wave., Thus the ultrasonic parameters,wavespeed
and attenuation, are a measure of the damage of the composite.

A new technique of ultrasonic NDE of composites is present-
ed here. Ultrasonic NDE has been around for years. However, none
of the existing techniques work satisfactorily for thin laminat-
es for the following reason: the wave reflection from laminate
faces are too close in the time domain and interfere with each
another. A new technique has been developed based on the follow-
Ing theorem of the theory of Fourier transforms: the closer two
events are in the time domaln, the farther apart are the corres-
ponding events in the frequency domain. The technique developed
here yields accurate measurements of wavespeed (or stiffness) and
attenuation (or damping) of longitudinal and shear waves in the
thickness direction,

The development of the technique and some results from its
application to fiber-reinforced composite,Graphite/Epoxy AS:/3502
laminates, of a variety of stacking sequences are presented.
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THEORETICAL ANALYSIS Consider a plate of a linear viscoelastic
material sandwiched between two half-spaces
of perfectly elastic materials. Consider also, a finite duration
pulse,ray 1,incident at the viscoelastic plate as shown in fig.1.

Fig.1 Pulse reflection and transmission by a plate.

Due to the mismatch in the acoustic impedence o©of the three
materials, there will be an infinite series of reflected and tra-
nsmitted pulses. These pulses contain information about the acou-
stic properties of the viscoelastic material.

Lf& the displacement field along the incident ray 1 be given
by =f(wt-ky,x), where f(s)z0 for s<0 and ww and k, are
circular frequency and wavenumber of the first half-space,res-
pectively. The total reflected field is the sum of the following

rays, with (h=b-a and s=wt+k X).

u’-Rlzf(s S,) s5,=2k,a

¢€=T,,R Tz,f(s S¢)s 5¢=2ky,a+2kh
u”’='1‘,2 23Rz, R, Tz,f(s—s,o); S,0=2K,a+kkh
where T..=Transmission coefficient from medium 1 to J

R.%“=Reflection coefficient from interface of media i&}]
with wave incident in medium i
The sum of these rays is

WeR, G T(52k,a) ¢ T, 4Ry, T, [(R, 4R, 0T £(sms )5 =2k a+m2kh (1)
m=0 ’
Similarly, the sum of the transmitted field c¢an be written
as ®
t ’
u =T12T232(R2,R23)mf(s-s )i sp=alke-ky)+nl(2m+idk-k ) (2)
m=0

It is to be noted here that k for a viscoelastic plate is a
complex wavenumber,

If we consider a plate immersed in water then in the zbove
analysis, the two half spaces are identical and the equations (1)
and (2) reduce to

u =R, ,f(8-2koa)+T, ,R,,T 21232(m 1)
t_ m=1
u ,2T2,2R2,f(s s s sp=h(2m+1)k-k,]
m=0
Let us define the Fourier Transforms as

f(s-sm); sm=2k°a+m2kh

Frlw)=5s  Jr(eye i9tqe

=311

1
2]

* i ® -
Fo(w)=7§ﬁ tolt)e lot,,
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from these we get

¥ i2ksag*
Fo(U))"'e ° F (m) ine
If the incident field is u =f,(wt-kyx),the reflected field
is given by u =Rf,(wt-kox~2k,a) where R=(p,Co-pc)/(pyce+pc). Let
the reflected signal as sensed by the transducer be £(t), then
f(t)=f,(wt-2k,a). It can be readily shown that at x=0, the total
reflected field is given by
WT (0,8 =52 _FFa(w)duel®t[R, e

van
where B_=T,,R,,T,,R5\" )

-12k°a+28me—i{2koa+2mkh}]

m=1

*
Let ur(O,t)=g(t) and G (w) be the Fourier transform of
g(t), then «

~

® . G .
23 o x2mkh=[__e2lxoa_R ] (3)
m * 12
m=1 F
Since 1+z+z%+2%+ ----=1/(1-z) for |z|<
Equation (3) can be written in the form
G
2 Ti2kh B _ SBa2Baar oL o 4
RZ,e 733 vhere 8 szsz[p* 1] (4)

*
~

By measuring F*( FFT of the front surface reflection and &

(FFT of the total signal with all reflections) the complex valued
k{w)=k,+ik, can be obtained from eq.(4),

Similarly, from the transmitted field it can be shown that

o th(k=k,)

______ mosao- = e (5)
T,.T.,F (w)

Here r* is the FET of the signal at the receiver when
there is no sample and G is the FFT of the total signal after
the sample has been introduced in the path.

The preceeding analysis 1s useful even when the sample is
thin and the pulses in the received signal are indistinguishable
from each other. However,if the pulses c¢an L& seperated out then
any two pulses can be used to obtain

*

G
-i2kh
"% "1=T;.T,, e (6)

F

where F*is the FFT of the first pulse and G*is the FFT of
two pulses. Substituting k=k,+ik, into eq.(6), where k,=20f/c, Kk,
is attenuation, ¢ 1is wWavespeed and f is frequency and comparing
the real and imaginary terms on tnhe (w0 sides we get
k,=2Nf/c=¢/2h or c=4Nh/(¢/f) and ajtenuation k2=L1n§-ln(T,2Tzl)]
where ¢ is the phase of G /F -1 and M=|G /F -1|.Detailed
derivation of these equations is given in [1].

TECHNIQUE DEVELOPMENT Keeping in view the tremendous speed and
reliability which can be achieved by using
computers for collection and analysis of data, the equations dev-
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eloped above were interpreted in a way most suitable for computer
analysis. Several potential sources of errors were studied next.
These are: (1) Sampling interval,(2) Frequency resolution,(3) Tra-
nsducer response and (4) Adequacy of pulse seperation. The first
factor is the digitizing interval for the signal. FFT of a 10 MHz
signal at 10ns(100 MHz), 20ns(50 MHz) and 40 ns(25 MHz) sampling
intervals was studied. It was observed that at 10 or 20 ns the
frequency content of the signal is essentially the same. However,
at 40 ns sampling interval the signal loses scme of its high fre-
quency content. The second factor considered was the resolution
of the signal in the frequency domain. A sampling frequency of 50
MHz or higher is being used and a resolution of 0.1 MHz or less
on the frequency domain is considered adequate. The third factor
considered was the useful range of the transducer frequency
response. The FFT of the first pulse is shown in Fig. 2b. It was
found that satisfactory measurements can be obtained over a freg-
uency range given by 25% of the peak amplitude. Fourthly, with
reference to Fig.2a, another source of error is that the operator
has to decide where the first pulse ends and the second one
starts. Hence as described in the theoretical analysis section,
methods have been developed where the full signal is analysed as
given in eqs.(4) and (5). For further details see [1]. The work
presented here is for specimens where the two pulses can be
seperated,.
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Fig.2 (a)Two gated pulses of the reflected signal (b)FFT of First
pulse (¢) Phase vs frequency for aluminum specimen.
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EXPERIMENTAL PROCEDURE The block diagram of the experimental
setup is as shown in fig. 3a. The speci-
mens were fabricated using Magnamite ASY4/3502 graphite prepreg
tape made by Hercules Inc. All specimens were of 11"x1"x varlable
thickness. The specimens were loaded on Instron Model 1125. The
tests were conducted at a crosshead speed of 0.05 in/min. Edge
replication was done with the specimens under a ncminal load to
open up the transverse cracks.

In order to insure that each transducer was interrogating
the same area, a square window was attached to the circular
transducer as shown in fig.3b. These windows were made of room-
temperature-curing silicone~rubber mixed with PMMA particles. To
ensure that the tests were not affected by the temperature varla-
tions, the bath temperature was cont<rolled to %0.5°C. To elimina-
te the water abscorption by microcracks, the edges of the cracked
specimens were coated by strippable lacquer ( Sherwin Williams ).
To avoid the spatial irregularities of the composite (ie matrix

-1 ——— \//_\1 - 7 :
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er fiber rich regions, thickness variations, surface marks etc),
to effect the measurements, tabs were provided on the specimen to
replace it in the wazter bath to within +0.001 in., after each
mechanical loading.
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ig.3(a) Block diagram of the experimental setup.
(b) Window attachment on the transducer.
RESULTS The technigue developed here wzs f{irst applied to
aluminium sample. Fig.2az shows the first and second ga

s }

O ct M

ed pulse for the aluminium sample and the phase vs frequency plot
is shown in fig. 2c. The phase &s calculated by the computer Is
modulo 2. It is converted to a continuous phase by adcing 21
gfter each cycle completion. Slope of the phase vs freguency
plot gives the group velocity. It was found that for the samples
tested,the group velocity wzs very close to the phase velocity é&s
the phase vs freq. plot was essentially a2 straight line. The wav-
espeed calculated from this plct was precise to 20.0Z% when the
specimen was not moved. If the specimen was removed between tests
anc¢ replzced the precision 1s reduced to =0.1%. The same tests
were repeated with heevily camaged ccmpesite specimen and the
crecision of the tests was found to pe =0.2%.
The errors in the measurement of attenuation were larger. I3
was found that <the attenuation cculc be measurement with &
12

re presentec Wi

rrecision of =x1.0¢. ALl the results it
L. FTig.4 shows <the

a
attenuation in the non-dimensional form e kK

edge repliceations of the damage states ancd the corresponding
attenuation vs frequency curves. At lower frequencies the
attenuztion is more sensitive to the damage than at higher freg-
uencies. It is observed that the attenuation gives a very good
measure of the extent of microdamzge in the off-axis plies.

Fig.5 shows the variation of the attenuation as the crack
length 1increases. Here,the crack length is the measure of the

number of c¢racks and is the totae. length of the c¢racks in the
field of measurement.

When there are less cracks :n the specimen then there 1Iis
some amount of scatter in the attenuation measured, but as he
total crack length increases the mezsurement becomes steady. Fcor
detezils of these results see [2].

CONCLUGSIONS A new technigue for the measurement of wave speed anc
attenuation o¢f wultrascnic: waves heas been developed,
that

To the best of our knowledge this s the first technigue
gives satisfactory resuits even fcr very thin specimen.
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The technique has been applied to fiber-reinforced composite
material specimens. It was found that whereas the wave speed ( or
stiffness) 1is rather insensitive to transverse «cracking, the
through-the-thickness attenuation is a sensitive meacure of the
damage state and hence is a potential damage metric,
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Fig.4 Edge replications of damage state and attenuation vs
frequency plot.
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Fig.5 Attenuation vs crack length for a graphite/epoxy specimen.
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ABSTRACT

Wavespeed and attenuation, the ultrasonic parameters are
affected by the internzl structure or damage of the material.
Accurately measured ultrasonlc parameters, in a composite coupon
d&re thus am indicator of the extent of the cumulative damage in
“ne coupon. A through-transmission water-immersjion technigue has
Seen developed for the measurement of the ulirasonic parameters.
“he pmethod utilizes the- Fast Fourifer Transfores to convert thneé
“ime domain signal to the Frequency domain signal. Computers are
used for the acquisltion and analysis of data, for accuracy and
Speed. This technique can be used to measure the ulitrasonic

-~zrameters of coupons of any thickness and material. The
-*thnique presented here has been used to measure damage in
< 2cimen made of Magnamite AS4/3502 Graphite/Epoxy. It has been
“dserved that attenuation increase due %o microcracks is a
T"2liabl2 measure of the damage in the composites. To tne best oF
Sur knowledge, this is the first technique whicH can be used to
1nterrogate specimens of any thickness.

INTRODUCTION

Fiber-Reinforced~Composites have been in use as strucsureal
nbers for a considerable amount of time and various methods are
ailable for their testing. A detailed review of the methods and
chniques avallable may be’'found in (1).

3e
av
ie
, The ccmplex damage state developed due to the loading
‘3echanical or thermsl) of composite materials, changes the
3tiffness and the damping characteristics of the material. When
i1 ylirasonic wave 1s-passed through the conposite, the wavespeed
f:d atltenuation mesasurements give the stiffness and damping of
'® material. Changes In wavespeed and attenuation are thus a
;:asure of the damage in the composites. It :is our endeavour %o
“Velop techniques to measure these  ultrasonic parameters
acCurately, repeatadly and quickly. We have used computers for
Ne collection and analysi{- of data, wWith least human
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intervention, so that the techniques can be automated.

The toneburst method has been the most basic method of the
wavespeed measurement. Since broad bursts of the signal(about g5
cycles ) are used in this method, it cannot be used when the
reflections from the front and back surfaces of the specimen
interfere. A computerized pulse technique was presented in (2)
for the measurement of wavespeed and attenuation. This methog
also depends on the seperation of pulses and though thinner
specimens could be tested, since a single pulse is being useg
the technique failed when the pulses started jnterfering.

We ©present here a technique which can be applied g
specimén of any thickness. A pitch-catch signal pulse of a 1 My
transducer s shown in Fig la. Wnhen a 10 ply composite spetimen
is introduced in the path, the total signal received is shown inp
Fig 1b. The technique presented here is capable of calculating
wavespeed and attenuation from the signals of Fig 1.

1

Amplitude

2l -——A-—u_‘J

. 3
Time (1L sec)

Amplitude
-
5 T

.
Time (i sec)

Fig. la. Pitch~Catch signal of a ) MH:z transcucer, b. S:i
a 10 ply composite specimen introcucec in the pea

The development of the technigue and some resultls from {ts
application to fiber reinforcecd compesite Graphite/Zpoxy ASK/350:2
laminates with stacking sequences [O,QOu)s are presented.
THEQORETICAL ANALYSIS

Consider & plate of & linear viscoelastic maleriel sanc-
wiched between two half-spaces of perfectly elastic materizls,
Consider =zlso, & finite <c¢uration pulse,ray 1,incident atl 1i1ne

viscoelastic plate &s shown in Fig 2.

Fig.2 A series of Pulses reflected and transmitted by a plate.
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v Due to the mismatch in the acoustic impedence of the three
materials, there will be an infinite series of reflected and tra-

-psmitted pulses. These pulses contaln iaformation adbout the acou-
stic properties of the viscoelastic material.

Let the displacement field along the inclident ray 1 be given
by utPCar(pt-k,x), where *{e2)=0 for s<0 and & and k, are
“circular frequency and wavenumber of the first half space. The
* ¢otal reflected field is the sur of the following rays, with

(h=b-a and s=wt+kox).

u?=R,,f(s-8,); 8,=2K,a
ut=T,,R,,T,,f{8-5,); s,=2ha+*2Kh
ul®aT, Ry, Ry, Ty f(875,,); S,0"2Koa-Hkh

where T J-Transmission coefficient from mediuc { to J
Rij-ﬂerlection coefficient from interface of media 1&}
with wave incident in medium i

The sum of these ray: is

ur-R,,r(s-2k°a)+7,,ﬁz,731§(ﬂx:H:-

o=0
imilarly, the sum of the transmitted field can be written

)? 1r(s s ),- -2kca*m2kh (1)

ubat Y(E,,R,,)mr(s—sc); s =alk,=k,)+hl(2me1)v=k,] (2)

l"‘z:..

m=0

T+ is to be noted here that k for a viscoelastic plate is &
comple) wavenumber.,

If we consider a plate immersed in water tinen in the above
Ym analysis, the two half spaces are identicezl and the egquations (1)
yand (2) recuce to

z ur=i,,f(s-2k°a)+leFz,Lz,ze(r 1)’(s-sm);sms’_’koaﬂ:Zka
© o=l
u”-TI:Tzliﬁfff(s—sr); sm-h{(Zm*1)k—kcj
o=0 N

Let us define the Fourier Transforcs as

- ¥ i « ~iet,,
F <“)'7éﬁ _Lif(e)e “rd
¥ 1 o ¥ -iwt
I3 (“)=7§ﬁ Lo lt)e *¥en

from these we get

* 4 *
Fo(w)me 2X%o2p% ()

If the incident field is uine, =f . (wt-kex),the reflected i

€

"1: given by ur=Rf (wt-k x-2K,2) where FR= (pocc pcl/{poCy*pC). L

grthe reflected signal as sensed by the transducer be f(t), th
Rf(t)=f,(wt-2kg,a). It can be reacdily shown that at x=0, the tlota
terlected field is given by

(-3

ur(O.t)-yéﬁ _Iri(wduet YR, e
: 2(m-1)

. - -
where Bm"xzﬁzx‘zsz:

-i2k,a, ? -:{2kcas2mknly
L

. r L ¥ - .
Let u (0,t)=g(t) and G (w) oe the Fourier transform of
then
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- G
-12mkh 21k a_
mzfme o S Gt P (3)

Since 1+z+z?ez'e =---a1/(1-2) for |z|<1
Equation (3) can be writtéan in thg form’
=-12xh - B _BLIEZ\ -
€ 1+8° where § szsz[;'

-1] )

2
RZJ

L]
By measuring F ( FFT of the front surface reflection ang ¢’
(FFT of the total signal with all reflections) the complex valyegq
k{w)=k, -1k, can be obtained from eq.(l).

Similarly, from the transmitted field it can be shown thay

mmmomsmosoe- - mmmemeeog- (5)
12kh Tty P (w)

Eere F‘ is the F§T of the signal at the receiver wher
there {< no sample and G is the FFT of the total signal af<en
the sample has been introduced in the path. Detalled derivatio-
of these equations is given in {(3).

Equation (5) can now be written in the following for-
2 .
Z7+72Y-c . =0. )

0 where Z=e thk
k-k1+1k
k.'-w/c
kz-coefficient of zttenuation
* * -
Y‘(leTzl/sz)(F /G )Lo

~ihk,

2

Zyme
kgs=wavenumber in the elastic meciurcs.
Ce=1./R2,

In (6) votnh Z and Y are complex.

In the water immersion case which is the one we

3
0

=3
golng to use for the tests, Z, can be easily calculated if <tne
wavespeed in water s accurately known. The trensmission ang
reflection coefficients can be calculated "if tne densities cf tne

Lwo mecdiums and longitudinal wavespeecds Iin them are Known.
the wavespeed in the plate is the unknown which we wart
measure. Hence to overcome this dilemma, an iteration procecu:
was followed where an approximate wavespeed {s provided as
input to estimate the various reflection and <transmiss
coefficients. The quadratic equation (6) is then solved to :
two roots of"Z. The correct root is cholen based on the fact tna-
as the frequency increases as the phase of Z decreases. To-
wavespeed {s calculated from the phase of Z. This wavespes=c ..
then used Lo re-estimate the reflection and transrissicr
coefficients. This jterative procedure coaverges rapidly o in
correct wavespeed. It was estimated that even with an in:
descrepancy of +30% in wavespeed, the solution converged in
than 5 {terations.

™

$oer ¢
P IR I & TR

642




_a

e o

e e gy &

EXPERIMENTAL PROCEDURE
.,—

p The block diagram of the experimental setup is as shown i{n
Fig 3-

Digstazing Prince

Oscilloscol Cu-nu:u .14
Dats 6000 wr 217 Think-

Pulner/

Receiver
35052 Ua

L=
specimer

A""’{ .—1—~ water path

transducer

Fig.3 Block diagram of the experimental setup.

- The analog signal (s <collected by the Pulser-Receiver
g&panametrics 5052 UA) and is fed into the Digital Oscilloscope
{pata 6000) The signal is digitized in the oscilloscope. The
signal "processing unit of thls oscilloscope then performs Fast
Fourler Transform on the signal. The useful portion of the
;ransformed signal 1is then acquired by the computer for the
L calculation of the wavespeed and the attenuation. In these steps
gseve.al potential sources of errors can affect the results. These
i gre: (1) Sawpling interval, (2} Frequency Resolution and (3)
rransduce” Response. The first factor is the digitizing intervazl
% of the acquired signal. FFT of a 1 MHz signsl at 10,20,40,100 n$
‘;ampling intervals was  ‘studied. It was observed that &t 10,20 or
'dao nS sampling interval the frequency content ©of the signzl is
@ 'essentially the same. However, at 100 nS sawmpling intervzl, the
gzgisnal loses some of its high frequency contents. The useful
Zdigitizing intervals depend on the frequency of the ¢transducer
peing used. For example for 10 MHz frequency, &t 42 nS interval
kiiome ¢f thé high frequency conteénts are lost. The s8econd factor
a%consldered was the resolution of the signzl in the frequency
domain. A sampling interval of 40 nS or 1less wWith a freguency
h.resolnu-on of 0.05 MHz or iess s considered adeguzte. This
Effactor is also transcducer frequency related. The trird ‘fzcior
ZFconsidered wes the useful rznge of the transducer frequency
#seresponse. It was found that satisfactory measurenents Can be
i?bbtained'over a2 frequency range given by 25% of the peak response
‘amplitude. For further details see (4).

¥ The specimens were fabricated using Magnazite AS4/3502 graphite
Ezprepreg tape wmade by Hercules Inc. All specimen were of 11"x1"x
*%.05" size. The specimens were loaded on Instron Model 1125. The
sstests were conducted at a crosshead speed of 0.05 in/min. The
Ltransverse cracks were opened by & nominegl load on the specimen
zand edge replications were taken to keep a record of the cracks.
E&I° eliminate the water absorption by the microcracks while
testing by ultrasounds, the edges of the cracked specimens were
#ecoated by Strippable Lacquer (Sharvin Wi-llams).

E R First of all, the accuracy of the nmeasurement technique
:reported here wazs estimated., The technique was applied to a

aheavxly damaged composite spetimen. This was done to account for
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measurements under the worst conditions of damage. It was
estimated that the precision of the measurement was 't0.3% fop
wavesreed and 21.5% for attenuation. It is to be roted here thas
the accuracy of the measurement will depend on the accuracy of
the predetermined input parameters viz. the densities of the
water and specimen and the wavespeed of ultrasound in water,

The results presented here are for Gr/Epoxy [0/90u]s specj-
mens tested by a broad band 5 MHz transducer., In the resuits
presented, atrznuation k2 has been non-dimensionalized to k._,.
Line sketches of the edge replications, where the measurements
were made, are shown in fig 4. The variation of attenuation, ag
the applied load is increasec,” is shown in Fig S. Numbers on the
curves denote the location number on the specimen. The specimen
were surveyed along the length for each load step to identify any
preferred localization of defects. It was observed that for the
layup tested, the damage was evenly distributed. As is eviden:
from the edge replications, very few cracks are developed fgor
stresses upto 35 ksi, and hence the increase {n attenuation is
also low. When the stresses were increased further, multiple
cracks developed and this resulted in a large increase In the
attenuaticn values.
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Fig 4. Line sketch of the edge replications of & [O/Qou]
Gr/Epoxy Specimen. L&R denote left & right sices of
the specimen
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It can be seen from the edge rep.ications that the damage :s

;evenly distributea along the 3speclmen and no preffered sites of

' damage were observed. The specimen failed near the grips.
L
§ As expected, for the tests conducted, no significant
‘yariation in wavespeed was observed. The reason is that {n this
‘econfiguration of the testing, the wavefront is perpendicular to
the plane of the crack, or the wave propagation direction is in
‘¢ne plane of tne crack. Hence, the cracks do net change the
'yavespeed appreciably,

_CONCLUSIONS

- —

A new technique for the measurement c¢f wave sSpeed and
fattenuation of ultrasonic waves has beer. cevelogped. This
it¢echnique is fully computerized and does not need any human
Hnterference except the placing and remcving the specimen froc
ithe ultrasonic path. To the best of our knowledge this s the
‘rirst technique that gives satisfactory results for specimen of
tany thickness.

2l

The technique has been applied to fiber-reinforcec composite
f}auerial specimens. It was found that whereas the wave speed ( or
fstiffness) 1is “rather insensitive to transverse cracking, the
ithrough-the-thickness attenuation is & sensitive measure of thne
Sﬂamage state and hence is a potential damage metric,

worr
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ULTRASONIC NDE OF COMPDSITES FOR TRANSVERSE CRACXING

Dayal,V. and Kinra,V.K.

Graduate Student and Assoc., Prol.,respeclively,
Dept. Of Aerospace Engg.

Texas A&M Unfversity.

College Station, TX 77840.

INTRODUCTION

When fiver-reinforced composites are loaced elther mechanlically or thermally, &
very complex damage state (s developed. The damage <conrsisis of ocalrix cracking,
longitucinal cracking, cdelamination, deboncing, {iber pulloutl, Tidber tbtreaking anc
void formatlion etc. As the cacage progresses, the mecnanical behavior c? wne
composite changes. This change mani{fests itsell in the form of recduciion in the
overall stiffness anc¢ an increese in the camping cheracterisitics cf the composites.
The wavespeed and zttlenuation ¢f a cechanlcal wave launched in the specimern depenc cn
the stiffness anc¢ the camping properties of the nmaterial, respectively, Thus, the
acoustic properties ( wavespeed and attenuation) of the waves passecd through tne
coeposites are allected ™y the camage.

The total canage picture in composites Is very vcomplex. One c¢r more cl ine
danmage mechaniszs =mensione¢ adove may De present &t the same lgcatien in the
composites. Though Lt would be an ldeal goal o Cevelop & methot which can give the
teral damage plcture, the NDE community has been unabdble tc ¢o so uniil now. befcre
trying to achieve this gogl we have o sStucCy aac uncerstan eacn caméfe meoce
{ingivicually. Xeeping this In view, in this work we have altemplecC 10 siuCy irne
iransverse cracking phenomenon. The reasons behind tnhis chclice zre: It 15 the meost
common cdamage mode; £v is generally the first step In cevelopment of clher camzge
moces; ancd Lt is ea2sy o gcenerate withoul the interference ¢ cither c&mege nmeces.
Though each type of <dameage mode will affect the oOverzll siilfress of ihe cempecsiles,
in this stucdy we have use¢ the layvups which promotle lhe transverse Cracking s the
cominant camage moce,

The conventicnal method of measurling the acoustle parateters i{s the tonebdburs:
method (11, If the specimens are thin, the refllection fros the face: 07 the spec:imen
interfere. "This rercers the toneburse technigue useless, as one canpeot icenttfy
tn¢ivicual maximuzs in the signal. ince the mos: commonly usec lamingzes in tne
aerospace siructures are expected to be rather thin (-2 mm) we under:iook the tzsi cf
developing a new technique especially sulted Tor tnin lawinates. The use cf computers
for data collectlion and analysls rake the tecnnique very atiractive for automa:iicn,
with hign degree of accuracy and repeatability.

A corputerized pulse technicue was presented (n [2] for the measurement ¢7 inhe
adcoustlic parameters. The dlgiticed slgnal in iime cocaln is transfermed 10 freguency
domain by the use of Fast Fourler Transforms (FFT). The accustic parameters are then
computed {rom the phase shift an¢ loss of armplitude between w0 pulses in the
reflected stgnal . This method¢ <couldg be used for specimen where the pulses could te
separated. The tonedurst method requires about 10 cycles ¢&f signhal, wherezs the
technigue developed by us required only one cycle, hence, though sSeparaztion of
sf{gnals was required {n both the mnethods, thinner samples can be interrogatec with
the new technique,.

An extensfon of this technique was presented 1In [3) where the sepacation cf
pulses is not required, Hence this technigue could be 2ppliec to specizen ¢f any
thickness, This technique could bde applied to both reflection or through-transcliesion
sethods, In the reflection mnmethod precise replacement of tae speiizen lg very
criti{cal for the correct measurement, The LArOUZh-iransmission meihoc coes nct suifer
{rom this restricifon and hence was usac by us. A plten~ceteh signal fromoa 1 ¥Ez
transducer s shown ir Fig.la. When a 10 ply compcsite specizmen ls fntroclucel in the
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path, the total signal received §is shown In Fig.ib. This technique (s capable of
calculating the acouatic parameters from these signals,

The above mentioned two techniques have been applied to the analysis of
transverse cracking. We present here the salient features of the two techniques for
completeness. Some results are then presented from the application of the techniques
to Graphite/Epoxy AS4/3502 laminates. Interested reader s referred to (&) for
further detalls. The results show that although the through-the~thickness measurement
of attenuation !s very sensitive to transverse cracks, wavespeed is not. A plausivle
explanation is that in this configuration of tests, the waves are nroving parallel to
the plane of the cracks. When the waves move normal to the cracks we should expectl a

larger reduction in the wavespeed.

In the Lamb wave mode ¢f wave motion in a plate, the waves move in the plane of
the plate, and hence are normal to the transverse Cracks. we have tested the
specimens with transverse Cracks usling Lamd waves. Results show that the changes (n
wavespeed and hence the changes in longlitudinal stiffness of the specimen can best be
getected by the use o Lamdb waves,

THEODRETICAL ANALYSIS

incident upon a composite plate, This

Consider an ultrasonic pulse in water,
the two interfaces, these rellecilons are

pulse will sulfer successive rellectlions =
shown (n Fig.2. It has been shown in (2]

e
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-
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. *
G /F =1%7,.T.,Exp(-2kn) (
the Fourier Transform of the pulse £,
the Fourler Transforc ¢7 the pulse 2.
s the Transmission Coef’f. from water ‘nto specimen.
s the Transkcission Coefr. fromn specipen into water.
c

where

k, is the Complex Wavenucder in the specinen.

1
w
{ the attenuzalion coeflicient.

s the circular frequency c¢f the {npul signal,
s the wavespeed in the specimen,

s the specimen thickness,

This eguaticn has been used 3¢ gevelop the

can be separatec. Tnhe prase of C /F -1 gives
gives the atlenuation To0~ the ultrasonic waves

onc technique pulses 4,8,12 ¢f

;( - P o’ L
Y e, /Ry )(F /G YT
Ze=Zxp(-1hk,)
Ky=wavenumber in pecdiug 1
Cowl/R,,
f,,"fellectlcn coefficient !n mediur 2 from the 2/1 interface.
KiTy2:7;,,h are same as defined earlier for egn.{1)

Note that i{n this equation both Z ancd Y are complex., This complex gquadratic
equation is solved 2t each point of the wavelorm. The correct root .s chosen based on
the fact that as the frequency increases, the phase ol I cdecrezses. The wavespeeC .s
calculated ‘rom the phase of 2. The reflecticn and the transcission coeflficients zre
C¢ependent on the wavespeed in the specimen, which s precisely what we want to
measure. This cilemma was resolved by an lierative procerure. wavespeed ‘or the
undamaged specimen is used to estimate the reflection and transmission coefficients
and a value or wavespeecd {s calculated from egn. (2). This wavespeed is usec as the
next guess In the estimate ©of the coefficients. It was found Lhat th en
initial error of 30 % in wavespeec, the solution convergecd in less than 5 iteraticns.

fer the Lamd wave tests we have usec only very low frecuencies i.e. 3
wavelengihs. The reason is that wnhen She waveleng;h is larée compared e e
;hicnness ¢’ the specinens, 2 few Limb mrmocdes zre generzied &nd SO &are easy Lo
icerntify, At itne iow freguencies wused, cnly tne fundzrental symmeific anc &nti-

——
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symmetric modes are exclted. We have used the symmetric mode of Lamb waves where the
particle displacement {s unliform across the plate,

EXPERIMENTAL PROCEDURE

The block diagram of the experimental setup i{s shown {n Fig.3. The pulse
generator triggers the signal generator which produces a stngle ¢cycle of =inusoica’
signal. This pulse is amplified by the power amplifier and the signal is fec into the
ultrasonic transduc¢r., The transmitter launches a mechanical wave Iln water., This wave
travels through the specimen and Is recelved by the recelving transducer. lThe signai
from th~ recelver is amplified by the signal amplifier and fed into the Digitizing
Oscllloscope. The analog signal is digitized and stored ir the oscilloscope. The
bullt=in signal processor of the oscilloscope provides the computer with the FFT of
the signal. The ultrasonic paraceter: are then calculated by the computer.

For the Lamb wave application, a trigger pulse is fed {nto the signal generastor
which, in the gatecd mode, produces a toneburst of signal of adout 10 cycles. Fesy ¢f
the circult description remains same as before. As shown in the block c¢lagram, .the
transcducers are mounted on precisely controlle¢ travelling mechanises. The specicen
1s mounted on a turntable. The vernier of the turntable {s gracuatec to 0.1°
rotation. This type of arrangement 1is required¢ so that when the specicen is rotatec
the transducers are suitably moved to ensure that the same area of the specizen :
interrogate¢ tthroughout the test. The procedure <followed for these tests s a
follows, Lamb Waves are generate¢ !n the specimen by launching a tonebdurs:t ¢
longttudinal waves through the water. The specicen ¢S rotated and the signal receivecd
by the receiving transducer !s recordec¢. Critical Lamd angles are iZentifiec by tine
sharp peaks in the recelved signal. The Lamb angles are confirmed by a very sicpie
test. An elementary calculation which, for brevity, {s omitilec here, shows theat {7
the receiving transducer 1s moved in a2 stiraight 1line parcllel to the zero cegree
orientation of the specimen, there should be no cnange !‘n the arrival tice o7 the

v -

signal. Since the wave travels a longer cistance in the specimen the atienuatior can
be measured. Frox the angle o©f tne specicen the wavespeet i czaleulatee by the
Snell's law;
Sin{& )/V = Sin(R/2)/¢C (z)
i W
where &, is the angle of incidence.
VH {8 the wavespeed in water.
C is the wavespeecd ‘n the Specimen.
The longitud:inal stiffness is calculated "rom the relaticn Z=pC? where p s the
censity of the specimen, I 1s the longiiudinal stiffress anc C the Lambd wavespeec. is
the cacage i{s incuced i{n ithe specimen, <cecre2se in the s:iffness of :he specizen

resulis in an increase in the Lamb angle.

RESULTS AND DISCUSSION

First we present some results fron the agplication ol tne technique wnere
Separatlion of pulses was poessible. In al. the results Fresentec¢ here w- have usec the
nen-dimensional form of atlenuation(k,i) where )} {3 the waveleng:ih of the slignal. The
variation of attenuation as the load is increasec %o induce the transverse cracks ‘s
suwowa {n Fig.4 rfor the specimen of {o,90,¢,2 layup. It is observed that for all
cdamage states the attenualtion decreases wit an increase in the frequency. The
faximum varlation in attenuation {s observed at 2 frequency of 2.25 MHz. This Cfigure

0

also shows a very Cramatic increase in the attenuation as the camage !s {ncucec 1§

the specimen. The vartation o’ attenuyation, at three locations on the spescimen, &

the total crack length in the field of observation increases, {s shown In Fig.5. Ia
the early s:tages of cdamage when there are a few cracks, some scatter in th

ailenuation is observed. As more cracks are generated, the attenuation vartatio

becomes steady. The reason i{s that when there are a ‘ew cracks then tlheir location,
IQ the "leld of the transducer, is critical. A crack in the center of the transcucer
Tield will scatter the waves much more than the crack at the edge of the "ielg., =
“hen there are a number 0of cracks then their effect is averaged outl and a *
Hniforo response {s obtained.

S

Further tests were performed on a [0/90,)
these tests was swofold. first, these ceing t w
seconc technlique developead by as, where tLhe various rell ions need not s
Separatec. Secondly, we were inierested in stuc tne Ltransverse cracks &ar

specimen st 35 MH:. The purgese ¢f
r teslecd L0 cnegtk n
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developed, I3 there any preferred site of damage accumulation andg 1f so, could it be
detected ultrasonically. These lests were performed on several specimens., Resul:s
from one Specimen are presented in Fig.6. The variation of attenuation with the
applied loads 1s shown at six different location on the speciven. Infitially there are
some preferred site: of damage, but as the damage increases It is evenly ¢lstributec
all over the speciren. In the specimens tested the faflure always took place &l the
grips and hence no precursor of final fallure could be Cdetectec.

Now, when a cdamaged specimern 1s wunloaded some of the transverse cracks may be
partlally closed. Such closure would tend to decrease the attenuation. Our objectlive
in the next set of tests was to experimentally determine whether or not the crackec
are partially closed. The through-the-thickness attenuation was monitored as the loac
on the specimen was {ncreasec¢. The maximum applied stress was about 15% 0f the
ultlmate sirenglh and was sufficiently low so as not to cause any acditional
cracking. The main problem {n these Lests was 10 prevent waler 7rom entering the
open cracks. A thin <coatling of a rubbery adhesive was wused Lo seal the ecges.,
Presented In Fig.7 s the variation 1in the attenuation as two cycles of lozd are
applled to open the <cracks and Fig.B shows the wavespeed varlation during the same
loading. The attenuation increases as the cracks open and follow essentially the sace

path over the two cycles of loading and unloading. The scatter bouncs of 1.0 & (n
attenuation and 0.5 % in wavespeed measuremen: are shown in the figures. This Shows
that even though the cracks open, as is eviden: fron the increzse in attenuvatior,

there 1s no measurable change in wavespeec.

Now we shift our attention to the ttesting of the wransverse cracks by Lamb
waves, All the tests have been concducted on {osec,1_ anc [0/790.1 specimens &t &
frequency cf 0.5 ME:z. Decrezse in s:iiffness as the crack length in the interrogation

area increases i{s shown in Ffig.,y, A Stealy Cccorease in the stiffrness !: cheorael
2s the transverse cracks increase. Variation ol attenuation as the Camage increases
is shown {n Fig.10. As expected, ettenuation increases monotonically with camage.
Since attenuation czn be measurec¢ with zn accuracy ol s 10%, the four-folc¢ ‘ncrezse
in attenuation observed in ihese testis is quite eppreciadle.

CONCLUSIONS

The elfect of transverse cracks cn the a&coustie peraceters cepencs on the
Cireciion of the wave opropzgation relztiive o the cragke. nooun czce cf
ihrough-the-thickness Measuregents where the ¥zve propageatlicn cirecticon is ‘n tne
plane of the cracks, the ztienuation nreasurement is sensitive 10 cacage while tne
vavespeed 15 ~o%. Conversely, vhen the waves wravel neorgal te  thne cracks, &s {n ine
cese o Lamd waves then, for tnhe configuratlon tested, bcih the &anc¢ the airejuetion
are sensitive 20 cracks.
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NONDESTRUCTIVE EVALUATION OF COMPOSITE
MATERIAL USING ULTRASOUND

V. K. Kinra and V. Dayal

Aerospace Engineering Department and
Mechanics and Materials Center Texas A&M University
College Station, TX 77843

ABSTRACT

Fiber-reinforced ccmposites are finding an increasing use in th: aero-
space industry. Initially the FRP components constituted only the non-
critical components of the structure. Now the composites are being usec in
the primary load bearing members. After undergoing a certain amount cf
usage, the mechanical, thermal and environmental loading produces a compiex
damage state which includes transverse cracks, longitudinal splits, delamina-
tions, debonding, etc. Almost all the NDT techniques are geared towards the
estimation of the extent of damage to the structure. From these resulis it :s
expected that the damage modelers will be able to estimeate the residual
stifiness and residual strength and life of the structure. We have used
ultrasonic waves 10 study the changes in stiffness of the structure as the
damage progresses. This work will help the damage modelers in furthering
their analysis.

The ultrasonic waves passing through a composite specimen interact with
the various defects, and in turn, these defects affect the basic ultrzsonic
parameters; wavespeed and attenuation. It is well known that wavespeec is
directly related to the stiffness, and attenuation is a measure of the Camp-
ing characteristics of the material. A very important stiffness component i
the in-plane stiffness of the plate. Hence, we propagate the waves in t
plane of the plate to measure tbe in-plane stiffness. The mode of propas
tion is called the Lamb wave or Plate wave mode. The plate is immersed in

<

{
o

fluid and the Lamb waves leaking into the fluid ere called the lezk
waves. These leaky waves have been used to Cetermine the waves
attenuation of the Lamb waves traveling in the plate,

J

v
need and

Damage is gradually introduced in the composite plate. In the work
presented here, we have limited the mode of damage 10 transverse crachs cnlv.
The chenges in the wavespeed and attenuation are measured as a funcion of
damage. We present here some resulls from the tesis of cross-p.v and angle-
ply graphite/epoxy laminates. The reduction in the in-plane stiffness and an
increase in the attenuation is observed as the number of iransverse cracks
increase,
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INTRODUCTION

The growth of damage in composite materials is very different from that
in homogeneous materials. In homogeneous materials once the damage is initi-
ated, any further loading tends to increase the existing damage. On the
other hand, in composites the damage relieves the stresses in its vicinity
such that the next cracking takes place at some other location. It is only
when the microcracks become densely populated that they initiate larger
damage such as interior delaminations. The study of damage growth in cross-
ply laminates due to cyclic loading! has shown that first the transverse
cracks appear in the 90° -plies. These cracks are restrained in their growth
and hence further loading results in the axial split in the 0° -plies due 10
the Poisson’s effect. The intersection of the transverse cracks ard the
longitudinal splits becomes the nucleation site for the interio- delaminatior.
between the plies.

When an ultrasonic wave is passed through a damaged composite, the inter-
action between the wave and the damage can affect the wave in two wavs: (1)
Damage will, in general, reduce stiffness and since wavespeed is directly
proportional to the square-root of stiffness, damage will reduce the waves-
peed, and (2) The attenuation will increase because the crack-wave interac-
tion results in an incoherent scattering of the waves. Thus the effect of
damage on the overall behavior of the composite can be stwdied by measuring
the acoustic parameters of the ultraspound passed through the specimen.

We have developed two new techniques® for the measurement of acousiic
parameters in thin laminates which are expected {o be used in zercspace
structures. With the first of these techniques, one is able 1o measure ihe
acoustic parameters when the pulses reflected from two surfaces of z pleie
specimen can be separated in time domain.  With the second technique cnz can
make the measurements even when the pulses are inseparzhble. Here, the siznz
10 time domain is transferred 1o the freguency domain by the use cof fast

Oaryes £ jonoy T 1o s s £opmey ¢ Aeemoaie s A e e
Fourier transforms (FFT). The date in the frequency domain is usec o an
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algorithm developed by us to measure the complex-valued wavenumber k = k; +
ko, where k; = ©/c, ¢ is the circular frequency of the signal used, ¢ is the
phase velocity and k, is the attenuation coefficient. Figure la shows that

in this mode of wave motion the wave travels in the plane of the crack and,
hence, there is a weak interaction between the waves and the crack. Results
show that although the changes in attenuation are substantial, the effect on
wavespeed is immeasurably small.

Figure 1b shows the Lamb wave mode where the wave travels normal to the
transverse cracks. Here the interaction between the wave and the crack is
stronger, and therefore, a larger effect on the acoustic paramelers was
observed. In this mode of wave motion, the longitudinal stiffness of the
plate determines the wavespeed. Hence, the effect of the transverse cracks on
the longitudinal in-plane stiffness of the composite laminates could be
studied. We present here some results from the testing of the composite
laminates with transverse cracks by the Lamb wave technique. The results
show that both the wavespeed and the attenuation are significantly affected
by the transverse cracks.

THEORY

For the Lamb wave tests we have used the fundamenta! svmmetric mode of
wave propagation. The reason behind this choice is that in this mode the
wave travels with a plane wavefroat. The relction between the material
properties and wavespeed in the fundamental symmetric mode” is

Cr2= Ey/le(1-vyavay))

where C; is the Lamb wavespeed, E; is the in-plane modulus, v,5 is the maior
Poisson’s ratio, and V., is the minor Poissor’s ratio.

For the composites used by us vyp= 0.25 ang vo,= 0.018. Thus vo-v-.
and to a first approximatisn eq. (1) is:

2_ . .

CL - El’/f (..

The relation between the angie of incidence of the wave on the plaie, ..
and the wavespeed (C.) of the Lamb wave is gov ) i -

sin( §;)/vy,. = sin{7/2)/C L3

where V, is the wavespeed in water.

EXPERIMENTAL SETUP

The block diagram of the experimental setup is shown in Fig.
specimen, the transmitter and the receiver are immersed in the water hath.
The specimen is mounted on a turn table and can be rotated zbout 2 vert
axis in steps of 0.1°. This rotation is required w0 set the specimen for the
through-the-thickness and Lemb wave measuremen's. The transducers
mounted on precision traveling mechanisms. In the through-the-thickne
measurements the specimen is normal 1o the incident wave and the two
ducers are in the same line,
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The pulse generator trigzers the signa. generator which produces a single
cycle of sinusoidal wave for tiirough-the-thickness measurements and a tone
burst for the Lamb wave measurcments. This signal is amplified by the power
amplifier and the signal is fed into the wide band transmitting transgucer.

The wave launched into the water travels through the specimen and sensed by
the receiving transducer. The signal from the receiver is amplified by the
signal amplifier and fed into the digitizing oscilloscope {Data 6000 by Date
Precision). The analog signal is digitized and stored in the oscilloscopz.

The built-in signal processor of this oscilloscope provides the computer with
the amplitude and location of a characteristic point of the toneburst signal

e.g. a maximum of a2 sine wave. The signal amplitude at a:fferent angies of
incidence is recorded, and critical Lamb angle is identified by the peak in

the received signal. A very simple test is sufficient to checl for the
correct Lamb angle. It can be shown by an elementary calculation that if the

receiver is moved in z straight line perpendicular to the line joining the
two transducers then there should be no change in the arrival time cf the
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Fig. 4. Stiffness Variation with Damage in [0/90;5), Laminate.

signal at the receiver provided the specimen is oriented a: the correct Lamb
angle. When the transducer is moved for this check, the wave spends mors
time in the specimen and less Ume in water and hence the attenualion can be
measurec,

All the specimens for which the results zre presentcd here are magde of
AS4/3502 graphite/epoxy laminates. The specimens are 11" x 1" coupons.

RESULTS AND DISCUSSIONS

Now we present some results from the testing of [0/905], anc [0/
laminates by the Lamb wave method when transverse cracks zre iniros Jce The
cracks are generated in these specimens by displacement controlizd monotionic
loading at a displacement rate of .02"/min.

We have carried out a theoretical ana)yszs of Lamb wave propagation in &
symmetrical balanced composite laminate®. The dispersion curves reproguced
here are from that work. Fig. 3 shows the dispersion curve for the [0. %3],
specimen. Phase velocity of the Lamb waves is plotted against the product ¢f
signal frequency and d, where 2d is the plate thickness. The symmetric and
antisymmetric modes are shown in solid and discontinuous lines, resnecu\e v,
The frequency at which the tests were performed (0.5 MHz), is indicated by a
circle; sy represents the fundamental symmetric mode. The normalized
reduction in stiffness as the number of cracks increases in the transcducer
field are shown in Fig. 4. The stiffness is ncrmalized with recoect to the
stiffness of the virgin specimen (i.e. no damage). There is a steady
decrease in the stiffness and the overall reduction is about 12%. The
increase in the attenuation for this specimen is shown in Fig. 5. A four
fold increase in attenuation can be observed in this test. Figure 6 shows
the dispersion curve for [0/904]5 laminate and the tests were conducted at
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the frequency indicated by the circled point. The line diagram of the siate
of damage is shown in Fig. 7. The location of the transmitter (TR) and the
receiver (R) ar«< shown in the figure. The reduction in the stiffness of this
laminate when the transverse cracks are introduced, is shown in Fig. 7.
Observe that going from the damage state 3 ubs
ial increase in the number of cracks in the specimen, the number of cra
in the local region interrogated by the transducer did not increase and h
the changes in the stiffness of the specimen were not observed. This is very
reassuring for it demonstrates that our measurement reflects local changes in
the stiffness. For this specimen the reduction in stiffness of about 30% wes
observed. The increase in the attenuation is shown in Fig. 8§ which shows

almost & six fold increase in attenuation.
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CONCLUSIONS

The use of two techniques for ultrasonic nondestructive evaluation of
damage (transverse cracking) in leininated composites has been demonsirate
In the first, a longitudinal wave is propagzizd in the thickness direction.
Here the crack-wave interaction is weak. As expected, the wavespeed doszs not
change measurably while the atienuztion increzses with transverse cracking.
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In the second technique, Lamb waves are propagated along the length of the
specimen. Here, the crack-wave interaction is the strongesty; both the waves-
peed and the attenuation change appreciably with damage. The Lamb wave
method, therefore, is 2 much more effective method for the detection cof
transverse cracks.
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ABSTRACT: The results of a round-robin testing study are presented
for measurements of dvnamic Young's modulus in two nickel-based al-
loys. The Interlaboratory Testing Program invoived six types of appa-
ratus, six different organizations. and specimens from a weil-docu-
mented source. All the techniques vielded values of dynamic Young's
modulus that agreed within 1.6% of cach other. For Inconel alioy 600
the dyvnamic modulus was 213.5 GPa with a standard deviation of 3.6
GPa: for Incoloy alloy 907 the corresponding values were 136.6 and 2.2
GPa. respectively. No sigr.iicant effect of {requency over the range 780
Hz to 15 MHz was found.

KEY WORDS: elastic modulus. dvnamic. Young's modulus. merals.
interlaboratory. frequency dependence

In engineering and science elastic mcdulus is of fundamenta)
and technological importance. It has applications in areas such as
load-deflection. buckling. thermoelastic stresses. elastic instabi'-
iy, fracture mechanics, creep. interatomic potentials. lattice de-
fects, thermodynamic equations of state. free energy, and thermal
expansion.

In refiection of this wide-ranging importance of modulus, sev-
eral standards organizativns around the world have formulated
procedures for the determination of static and dvnamic modulus of
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certain types of materials. For example, ASTM has published
Standard Methods for Young's Modulus, Shear Modulus, and
Poisson’s Ratio for Glass and Glass-Ceramics by Resonance
(ASTM C 623). Young's Modulus, Shear Modulus, and Poisson's
Ratio for Ceramic Whitewares by Resonance (ASTM C 848). Mod-
uli of Elasticity and Fundamental Frequencies of Carbon and
Graphite Materials by Sonic Resonance (ASTM C 747). and Fun-
damental Transverse, Longitudinal, and Torsional Frequencies of
Concrete Specimens (ASTM C 215). In addition. there is the weli-
known standard test method for determining static Young's modu-
lus of metallic tensile specimens (ASTM E 111). In view of the con-
siderable amouvnt of work devoted by members of standards
organizations to the formulation and publication of these recog-
nized testing methods for specific materials. it is very surprising
that there is no recognized testing method jor the determination or
dynamic Young's modulus in metallic maicrals. There is, how-
ever. a large contribution towards a recognized testing method for
dyvnamic modulus in ASTM Practice for Measuring Ultresonic Ve-
locity in Materials (E 494). The main aim of this paper is 1o be 2
part of a movement to fill this lacuna.

As background history to the preparation of this paper. it is per-
tinent 10 mention that in the eariv 1980s, within the framework of
ASTM Subcommittee E28.03 on Elastic Properties and Defini-
tions on Mechanical Testing. un Interlaboratory Testing Program
was set up to address measurements of dvnamic Young's moduius
in metals. This program or task group carries the identification
E28.03.05: its active members and their laboratories are listed in
Table |. The paper is the first full report resulting from the testing
program &nd documents the allovs used as specimens. some details
on the various testing technigues in the laboratories. the experi-
mental results, a detailed analvsis of the results (with discussions,
and the conclusions of the studv.

Specimens

For the Interlaboratory Testing Program special care was de-
voted 1o specimen sefection and preparation. An eariv discussion of
the ASTM E2R.03.05 group reculted in a consensus that the mate.
rials chosen should be of technological interest and that the prefer
ence of one of the laboratories for a magnetic material should te
respected. One of the group members made the resources of his
company available in this regard. Thus Inco Aliovs International
provided both the materials and the m. chining facilities. The me-
taliic materials chosen for the tests were Inconel allov 600 (UNS
N06600; designated Aliov A) and Incoloy alloy 907 (UNS N19907;
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TABLE 1—List of the personnel taking part in the interlaboratory testing program and their
luborutories or company numes, and of the trade names or ucronyms (where available) jor the
apparatus used and the phvsical principle of operation.

Trade Name

Laboratory Personnel or Acronym Physical Principte
1. Inco J. S. Smith Free-free Beam
Alloys (F)
International
2. Pitney Y. T. Chen Free-free Beam
Bowes R. R. Philiips (Fy
P. Terranova
3 LW, 1. W. Lemmens Grindo-Sonic Impulse
Lemmens Excitation
Electronika (F)
4. National G. V. Blessing Velocity
Bureau of Measurements of
Standards Clirasonic Wave
(NBS) Puises
(m
S, Texas A&M A. Wolfenden PLCOT Piczoelectric
University M. R. Harmouche tPiezoclectric Ultrasonic
Ultrasonic Oscillation
Composite (F)
Oscillator
Technique)
6. Texas A&M V. K. Kinra Ultrasomic
University V. Dayal Pulse Spectro-
scopy (P
T.3M P. Mahmoodi Frec-iree Beam
Company R.J. Wuinn (F)
8. Texas A&M A. Wolfenden Modul-R Magnetically

University M. R. Harmouche

Excited Resonance

(F)

F: Denotes that the apparatus 's designed to measure frequency of the specimen.
T: Denotes that the apparatus s designed to measure the transit time for ultrasonic puises.
P: Denutes that the apparatus is designed for ultrasonic pulse spectroscopy.

th: magnetic material. designated Alloy B).'® The chemical com-
positions, thermomechanical trcatments, and sizes of the speci-
mens of Allovs A and B are given in Table 2. The specimen sizes
reflect to a great extent the optimum or convenient sizes pertinent
to the particular measuring techniques at the various laboratories.
To examine the possibility that the specimens were not isotropic,
X-ray diffraction pole figures (powder patterns) were obtained for
filings from the specimens and for pieces of the specimens. For [a-
conel alloy 600 (Alloy A), no significant texture effects were de-
tected. However, for Incoloy 2lloy 907 (Aioy B), small traces of
1311) and (222) textures were found.

Experimental Procedures

Ail ciperimental methods of measuring dynamic Young's mod-
ulus £ use. in some form or other, the basic wave equation for the
aropagation of a longitudinal elastic wave i1, an eiastic mediun:

E:pv: h

~here p is the mass density of the medium and v is the wave speed.

"Inconel and Incoloy are trademarks for products of the Inco family of
<ompanies (Inco Alloys International. Inc.).

Thus the methods tha: are concerned with measurements of transit
time ¢ (and hence velocity) of ultrasonic pulses over a known dis-
tance L in an elastic medium apply Eq | directly (v = L 1), assum-
ing that p is known or can be measured also. In the case of the
methods that utilize measurements of resonant frequency of stand-
ing or decaying elastic waves in an elastic medium a modified form
of Eq I is applied:

= pl AP (2)

where fis the resonant frequency and X is the wavelength. The spe-
cific geometrical details of the specimen usually determine ). For
example, for a uniform beam resonating in its fundamental longi-
tudinal mode. the wavelength is twice the feagth L of the beam.
Therefore Eq 2 becomes

E =L’ (3)

Again, in the frequency methods p must be known or measured.
Allbut one (i the experimental procedures used in the Interlabora-
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TABLE 2—Chemical compositions. thermomechanical treatments, and sizes of the
specimens of Alloys A and B.

Alioy A

(Inconel Alloy 600)

Alloy B
(Incoloy Alioy 907)

Compasition (wt%)

Ni 74.91 37.46
Cr 15.48
Fe & others balance balance
C 0.08 0.01
Co 14.38
Nb 4.71
Ti 1.40
Treatment
Cold drawn Hot rolled
Mill anneated”
31.75 mm 17.78 by 101.6 mm

(1.25 in.) diameter

(0.5 by 4 in fiar

Specimen Sizes

K .und 625 mm (0.25 in.; diameter by 79.38 mm (3.125 i) long

Strip 2.03 mm (0.080 in.) by 6.35 mm (0.251n.) by 100,653 mm
(4.1991n.)

Special #] 23,4 mm (1.000 in,) diameter

by 101.6 mm (3.000 in.)

Special #2

S0.8 by 50.8 by 19.05 mm
(2byv2by 0.750in0)

2334 mm diameter by 19.053 mm
(1 in. diameter by 0750 16,5

“In the range 950 10 1038°C.

torv Testing Program fell into these tw - basic categories for deter-
mining dynamic Young's moduius. The third basic technique,
newly developed, is ultrasonic pulse spectroscopy. The techniques
will be described in this section of the paper in the follow:ng se-
quence: free-free beam. impuise excitation, wave velocity measure-
ments, ultrasonic pulse spectroscopy, pic zoelectric ultrasonic oscil-
lation, and magnetically excited resonar ce.

Free-Free Beam Technique

Three of the laboratories mentioned in Table 1 incorporated the
free-free beam test method [/-3]. While the details of the appa-
ratus at the three locations vary, the basic principle of operation is
the same. For brevity, an apparatus will be described which may be
regarded as typical for the technique.

The test method is patterned after the technique of Spinner and
Tefft {2] of the National Bureau of Standards. Figure 1 shows sche-
matically the instrumentation and the test configuration. The rec-
tangular or cylindrical specimen is suspended near its nodal points
by pure silk or cotton-covered polvester thread. The nodal points
for beams of uniform section in a free-free suspension are at dis-
tances from the frec ends of approximately 0.22L and 0.78L [4].
For the rectangular specimen the cotion threads are positioned at
opposite sides as indicated by Spinner and Tefft {2] and suspended
from Astatic X 26 crystal cutters used as both drive and pickup
transducers. This configuration of opposite side suspension excites
both the flexural and torsional modes of vibration. Cylindrical
specimens are suspended in a similar manner except for the obvi-
ous off-setting of the suspension positions. Alternatively, the better
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string suspension system known as the loop method may be used
is]

The sine wave signal from a function generator is fed to a power
amplifier and then to the driver transducer. The pickup transducer
has a 10X gain preamplifier. The signal from the pickup is ana-
Ivzed on a suitable analyzer, which is configured in a peak averag-
ing mode using exponential averaging. The function generator is
swept manually through the frequency range of interest while the
output signal is examined. The fundamental frequency is quite
easily determined in this manner.

Phyvsical measurements such as length. width. diameter, or
thickness are measured with a machinist’s caliper. The density of
the specimen is determined using mass and volume calculated
from the measured dimensions.

The equations used for calculating Young's modulus are {4}

Cylindrical: E = 64z L%/ A% (4)

Rectanguiar: E = 48z Lip A%’ 3

ahere

1l

fundamental frequency,

= free length,

= density,

J = diameter,

= thickness, and

constant depending on the shape of the specimen.

e
|

©
]

1

L
I

‘mpulse Excitation Technique

The test method entails (¢) the excitation of the test specimen by
~eans of a light mechanical impulse ta tap! and (&) the analysis of
n2 resultant transient vibration. An electronic circuit is used to

isolate the harmonics and the fundamental resonant frequency
from the spectrum of noise, 2nd to measure the period correspond-
ing to the fundamental frequency. The result is displayed in digital
form. A block diagram for the method is shown in Fig. 2.

The specimen is supported preferably at the nodes of the desired
vibrational mode. By positioning correctly the location of the excit-
ing impulse, each mode can be induced easily. Whatever the mode,
the instrument will identify the fundamental resonant frequency of
the vibration. Very little exciting energy is required, even for very
large specimens, because the measurement is performed at a very
low strain amplitude. Hence only a very light tap is sufficient 1o
initiate the measurement.

The most versatile means of detecting the vibrational motion is
proviced by a hand-heid piezoelectric probe. It is used te analyvze
signals from about 20 Hz to 80 kHz in frequency. Acoustic. opti-
cal, or electromagnetic detectors can be used for specialized pur-
poses, such as testing materials at high temperatures. With the
fundamental resonant frequency thus obtained and the density de-
termined by the Archimedes method. the moduli and Poisson’s ra-
tio can be calculated for regular shaped specimens using well-
known eauations {2].

Velocity of Uttrasonic Wave Pulses

This technique is one of the better knowr methods for measur-
ing dvnamic moduli in materials. A brief account of the theory be-
hind the technique and of the experimental arrangement is given.

For ultrasonic wavelengths less than the dimensions of the speci-
mens. two normal modes of wave propagation in isotropic media
prevail. They are the longitudinal and shear modes, with respective
velocities Vi and V| (see, for example. Refs 6 and -~ and ASTM E
494). Longitudinal waves. sometimes refer.ed 1o as comoressional
waves. alternately compress and dilate the mutenal lattice the..
generate compressive and tensile sirains) as thev pass by, The re-

TMpPuLss —
DArs
V MEMoRy
ovTreT
TESY OA€cT L —
ViBRAT. 0w
PAOCELS
DETECTOA + | Disriay C@u~ TER
CONTAOLLER ~
PRE~RmPLF kP,
—
Y y ‘r
2E40
W.eiBAND PERIOD para
CRO3YiNG . Ton
AmPLIF1eR 3 - CounTEFR I vaLion Care
DETECTOR LeCiC L
FrlEnCE
PEAX LEvEL Rere
[ CAYSTAL
DETFCTOR ComPAraTOR Lol
O5C14t ATOR

FIG. 2—Block diagram of 1ae impulse excitation techmique.
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sulting particie motion of the material is parallc! to the direction of
wave propagation. Shear waves. on the other hand. generate parti-
cle displacements perpendicular to the propagation direction,
causing the material lattice to shear as the waves pass by.

From these two wave speeds and the density p, ali the elastic pa-
rameters of the material can be calculated: the Young's, bulk. and
shear moduli, and Poissor’'s ratio (P.R.). Their relationships are
given by

Young's modulus = pVI(3VI — 4VIHAV.I = V) (6)
Bulk modutus = o (V] — (4 3) V7)) (M
Shear modulus = p\’f (8)

P.R. = (V] — 2vir@v] — 2v) 9
Anisotropy and inhomogeneity 1n the specimen may be conve-
niently ev.aiuated ultrasonically. 1f a specimen is inhomogeneous,
different wave speeds will be observed at different positions in the
specimen: if the specimen is anisotropic. different wave speeds will
be observed for different propagation directions in the specimen.
Furthermore, shear waves may be used 1o evaluate anisotropy in
the specimen by propagating them in the same direction and rotat-
ing the transducer’s particle dispiacement (polarization) vector.
The wave speed V in the specimen is determined by measuring
the transit time ¢ of an ultrasonic pulse over a known path L in the
specimen. and by calculating V' = L-7. [t is important to note that
the distin tion between phase and group velocities becomes irrele-
vant for non-dispersive media. such as the specimens tested here.
This is pointed out empiricaliv in the {ollowing section. The neces-
sary measurements to differentiate beiween group and phase val-
ues were not made. The measurement techniques applied here
could span the difference between the twoe values. In any event. the
difference between the values is probably less than the measure-
ment precision quoted for the metal sampies studied: one partina
thousand, or 0.1%. Typicaliy. L 1s twice some usable dimension in
the specimen, such as the evlinder bar length or the thickness of a
flat strip. The factor of two derives from the round-trip distance for
the pulse when making pulse-ect o measurements using a single

PULSER/RICEIVER

transducer. The pulse-echo-overlap technique is convenient for
making precise transit time measurements |8]. With this tech-
nigue, at least two echoes (with a single transducer) are needed to
provide an overlap of successive echoes on the oscilloscope by
means of rime-delaying circuitry, from: which the transit times in
the specimen are determined.

The ultrasonic velocity measurements are mude at frequencies
ranging from 5 10 15 MHz for the specimien dimensions in these
tests. with the higher frequencies being used for shorter path
lengths. All measurements are made at a nominal room tempera-
ture of 21°C. Figure 3 illustrates the principal components used for
a majority of the measurements. (Some data are taken using 2
through-transmission technique wherein a second transducer at-
tached to the opposite face of the specimen receives the ultrasonic
pulse.) A pulser/receiver unit transmits @ very short (less than 0.1
us) spike voltage 1o a transducer, generating a broad-band uitrz-
sonic wave of short duration—Iless than 1.0 us. for example, a1 &
MHz. A typical broad-band wave shape is illustrated in Fig. 3. For
the rod sample, it should be noted that the errors in determining
wave speed can be very significant due to sidewall reflections using
the pulse-echo-overlap (or through transmission) techmique ¢}
Alternatively, the transducer may be driven by a multi-cycie sinus-
oidal voliage burst. usually at the transducer’s resonant frequency .
which results in a relatively narrow band vltrasonic wave packet of
fonger duration—several microseconds. for example, at 3 MHz.
The transducer converts the excitation into a mechanical oscilla-
tion or sound wave which is coupled into the specimen to propagate
at the sound velocity. The coupling is significantiv enhanced by use
of a thin laver tmuch less than an ultrasonic wavelengthy of hquid
or elastomer material. (Other coupling techniques exist which o
not require direct mechinical contact of transducer 1o speaimen
{7}.) Commercially available transducers have & casing that Fouses
a piczoelectric element and often an impedance matching circut,
which are designed for convenient electneal attachment o the
pulser/receiver via coaxial cabie and standarcd connectors. The pi-
ezoelectric elements of the transducers used in this work range
from 4 to 13 mm dizmeter.

After entering the specimen. the ultrasonic puise echoes back

1S

and forth between the faces of the speeimen, whiiv constan

. absorpuen. and boundun

caving in amplitude due to scatterr

EQT faMe f

J

FIG. d—Ulirasonic velocuy measurement system with direct comtacs 7 transducer on specomen Tie
transit ime of the wltrasonic pulse is measircd &, the puise eche overig tecitngue
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interface losses. Each time the wave pulse is incident at the trans-
ducer/specimen interface, a portion of the elastic wave energy is
converted into an electrical signal by the transducer. This received
signal is then amplified and displayed on an oscilloscope :0 that
the transit time measurements can be made. Electronic techniques
exist to automate the measurements with direct computer control.
The accuracy of these measurements depends on the dimensions of
the specimen (path length, end-face parallelism, etc.), the particu-
lar ultrasonic coupling technique, and the signal-to-noise ratio.
Typically, the accuracy for these transit time measurements is %
0.1% or better. The accuracy could be increased (if desired) by
1aking into account (a) the effects of beam spreading (diffraction)
and (b) the small but finite effect of the bond layer thickness on the
phase shift upon each reflection from the specimen-transducer
boundary, as noted elsewhere [/0.7]/]. However, in discussing
these potentially high accuracies, the limitations imposed by the
inhomogeneiry and anisotropy of the specimens should be kept in
mind. Indeed, in Specimen 2.3 (Incoloy alloy 907) a noticeable an-
isotropy of about 10% for the shear moduius was detected at both
Positions 1 and 2 (see Fig. 3. bar sample). This anisotropy effect on
the modulus most likely arises from the texture observed in Alloy B
(see Specimens section). The densities of the specimens for this
study were determined by the Archimedes method, by which the
density of the specimen is measured relative to that of distilled wa-
ter. The latter density is known from published tables.

Ultrasonic Pulse Spectroscopy for the Measurement of Phase
Velocity and Atrenuation

As discussed earlier in this paper, all the elastic parameters of a
material can be calculated from the measurement of longitudinal
and shear phase velocities. The technique described in the previous
section is the conventional method of measuring the wave speed. If
the specimen is thick (where the reflections can be separated in
time domain), the transit time method is the easiest and very effi-
cient. However. if the specimen is thin that method breaks down
and cannot be used. Even when applicable. the conventional
method requires human judgment and interference to make good
measurements. The measurement of attenuation is not at all accu-
ratc and by this method only group velocity can be measured.

We have developed techniques which have eliminated all the
above mentioned limitations. A fully computerized technique has
been developed which can measure phase velocity and attenuation
for thick as well as thin specin-ens. The digitized signal in time
domain is transformed to the frequency domain by the use of Fast
Fourier Transforms (FFT). If two pulses can be separated, then
acoustic parameters, phase velocity, and attenuation are computed
from the phase shift and Joss of amplitude between two pulses in
the reflected or transmitted signal. If the pulses cannot be sepa-
rated, the complete signal is transformed by FFT and, by decon-
volving the signal with respect to a reference signal, the acoustic
parameters are computed. For details of these techniques readers
are referred to Refs /2 and /3.

The techniques can be used both in the transmission and refiec-
tion mode. They can be used in direct contact or water immersion
with a minor change in the governing equations. The techniques
measure phase velocity and attenuation over a range of frequencies
from which the group velocity can be obtained. Due to the fact that
attenuation can be measured accurately, a varietv of potential ap-
plications of this technique are envisaged. The effect of tempera-
ture up to the melting point of a material can be studied. The uni-

formity of the specimen and its porosity can be estimated. In
composite materials we are able to assess damage due 10 mechani-
cal and thermal loading. Brief accounts of the theory behind the
technique, the procedure, and the results follow,

If the pulses can be separated in the time domain the following
equation is obtained [13] for the water immersion reflection case:

G*/F* = | + T3Ty exp(—i2kh) (10)
and for the direct contact reflection case:
G*/F* = 1 + K}, exp(—i2kh) (11

where

G* = FFT of twe pulses,
F* = FFT of the first pulse,
T, = transmission coefficient from medium { 1o,

R,, = refiection coefficient when the wave travelling in medium
refiects from i/j interface,
h = specimen thickness.
k = ky + ik, is the complex wavenumber.
k; = w/c is the wavenumber,
w = circular frequency,
¢ = wave speed, and
k; = attenuation. )

Substituting k = k; + iksinto Eqs 10 and 11 and comparing the
real and imaginary parts of the two sides. we obtain
ky = 2f7/c = o/2h

or ¢ = 4h/(e/f)
and k- = In(M)
where ¢ = phase of G*/F* — 1, and

|G*/F* — i{/(T\3T2) in water immersion

- { G*/F* — 1|/R%, in direct contact
N

Similarly, if the pulse cannot be separated, then for the reflec-
tion field:

exp(—i2kh) = [8/(1 + B)R],
where 8 = R;Ru|G*/F* — 1}/(T;,T3;). Here G* is the FFT of

the entire reflected field and F* is the FFT of the reference signal.
For the transmitied field:

exp(—ih(k — ko)) _ G*
1 — R}, exp(—i2kh) T\ ToF*

Here F* is the FFT of the signal at the rcceiver when there is no
sample berween the two transducers and G* is the FFT of the total
transmitted signal after the specimen is introduced in the acoustic
path.

Since fairly thick specimens were tested in the tests reported
here, EqQ 11 has been used in the measurements.

The block diagram of the experimental setup is as shown in Fig.
4. The analog signal is collected h; (L. pulser-receiver and i« fed
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FIG. 4—Schemaiic diegram of the ulirasonic pulse spectroscopy

technique.

into the digital oscilloscope. The signal is digitized in the oscillo-
scope. The signal processing unit of this oscilloscope performs Fast
Fourier Transform on the signal. The useful portion of the trans-
formed signal is then acquired by the computer for the calculation
of the wave speed and the artenuation. In these steps several poten-
tial sources of errors can affect the results: (1) sampling interval,
(2) frequency resolution, and (3) transducer response. The first
factor is the digitizing interval of the acquired signal. The FFT of a
1 MHz signal at 10, 20. 40, and 100 ns sampling intervals was stud-
ied. It was observed that at the 10, 20, or 40 ns sampling interval
the frequency content of the signal is essentially the same. How-
ever, at the 100 ns sampling interval, the signal loses some of its
high frequency contents. The useful digitizing intervais depend on
the frequency of the transducer being used. For example. for 10
MHz frequency. at the 40 ns interval some of the high frequency
contents are lost. The second factor considered was the resolution
of the signal in the frequency domain. A sampling interval of 40 ns
or less with a frequency resolution of 0.05 MHz or less is considered
adequate. This factor is also transducer frequency related. The
third factor considered was the useful range of the transducer fre-
quency response. It was found that satisfactory measurements can
be obtained over a frequency range given by 25% of the peak re-
sponse amplitude.

Three specimens were tested by the technique described above.
The phase versus frequency plot for these specimens was a straight
line; hence it can be deduced that the phase velocity (=w/k) is
equal to the group velocity (=dw/dk) for these specimens.

The measurement of the wave specd is estimated to be accurate
to £0.05%. The results obtained for three specimens are pre-
sented in Tables 3 and 4. The density for Specimens B2.2 and A1.3
was measured by the Archimedes principle; the density of Speci-
men Al.1 was measured by direct measurement of dimensions and
mass. This resulted in a larger uncertainty in the measurement of
density of Specimen Al.1 and consequently in a larger error in the
value of E.

Piezoelectric Ultrasonic Composite Oscillator Technique
({PUCOT)

Essentially, the apparatus for the PUCOT consists of piezoelec-
tric quartz drive (D) and gage (G) crystals to excite Jongitudinal or
torsional ultrasonic (kHz) resonant stress waves in the test speci-

men (S) of appropriate resonant length via a fused quariz spacer
rod (Fig. 5). The components are joined with Loctite or ceramic
cement as test temperature dictates. The spacer rod may be omit-
ted for measurements near ambient temperatures. The resonant
system is driven by a closed-loop oscillator which maintains a con-
stant (preselected) gage voltage and hence a constant maximum
strain amplitude in the specimen. During a test, values of the reso-
nant period of the DGS (drive-gage-specimen) system are recorded
and standard equations (Table S) are used to calculate Young's
modulus E. The validity of the measured value for £ is determined
from the ratio R of the period in the specimen to that of the quartz
crystals. Ideally the ratio should be unity. However, ratios between
0.97 and 1.03 yield equally vaiid results. More detailed descrip-
tions of the PUCOT have been given elsewhere [/4-16].

The PUCOT is limited to frequencies between 20 and 200 kHz.
Therefore specimens that resonate beyond this frequency range
cannot be tested. The test specimen may be cylindrical or a paral-
lelepiped, but the cross section can vary in size and shape. The
ratio of specimen length to the largest dimension in the cross sec-
tion must exceed five to prevent dispersion of the ultrasonic wave.
The strain amplitude is in the range 10" f 10 1077,

The density of the specimens for the PUCOT study was deter-
mined by the Archimedes method.

Magnetically Excited Resonance

Magnetically excited resonance involves the use of an instrument
known as the Modul-R which measures the longitudinal resonant
frequency of a specimen of ferromagnetic material near 25 kHz.
This frequency has been selected because it permits use of a conve-
nient specimen length of about 100 mm. For convenience of calcu-
lations the specimen size is 104.63 by 6.35 mm. Thicknesses may
vary from 0.203 to 2.03 mim. The speciinen must be ferromagnetic
because both the specimen drive and pickup signals are derived
from magnetostriction in the specimen.

A schematic diagram of the apparatus is given in Fig. 6. The
method of operation is as follows. The specimen is placed in the
coil assembly where it is supported by the bias coil frame at its
midlength location. A magnetic pulse initiates the vibration, set-
ting up a field in the pickup coil from which a small signal is ampli-
fied and fed into the drive coil. An alternating current passing
through the drive coil produces an alternating field in the interior
of the coil. In the presence of this fieid. the specimen alternately
contracts and extends longitudinally. These vibrations traverse the
specimen with the velocity of sound and appear as vibratiors in the
part of the specimen encircled by the pickup coil. These changes in
strain alter the permeability of the specimen and its magnetic flux
density. The altered magnetic flux density induces an alternating
current in the pickup coil by amplifving the pickup signal and
feeding it back to the drive coil in the correct phase relationship
with the mechanical vibrations initiated by the bias coil. The speci-
men becomes the frequency-controlling element of the magneto-
strictive oscillator, and only the fundamental longitudinal resonant
frequency is displayed on the digital output counter. On the basis
of the results obtained for modulus with this technique. the mag-
netic field imposed on the specimen is small encugh to avoid the
AE effect.

For this interlaboratory study only Specimen B2.3 (ferromag-
netic and of required dimensions) was tested with the Modul-R.
The density of the specimen was determined by the Archimedes
method.

ae b -
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TABLE 3—ASTM E28.03.05 d ic Young's modul
interlaboratory study.
Alloy A Raw Data Table
Laboratory Specimen E.GPa Density, g/cm?

1 1.1 218.0  B8.43 1A}
1.1 218.0 8.43
1.1 218.1 8.4)
1.2 216.9 8.43
1.3 2185 8.43

2 1.1 210.5  8.376 Chen/Phillips
) 209.2  £.339

3 1.1 31.4* 8.43 Lemmens
1.1 218.8 8.43
1.2 216.0 8.43
1.3 217.5  8.43
1.3 217.0  6.43
1.3 216.2 8.4
1.3 217.3 8.43

4 1.1 212.0 8.36 NBS/Paraliel
1.3 205.0 B8.36 NBS/Parallel
1.3 2150 8.36 NBS/Perpendicular, pos. 1**
1.3 207.0 8.36 NBS/Perpendicular, pos. 2**

5 1.2 216.9 8.371 Texas A&M (PUCOT)
1.4 216.6  8.373

6 1.1 215.6 8.38 Texas A&M (Kinra)
1.3 214.2  8.37

1 14 2000 3.2 M
1.3 210.3  8.37

*Reject this value (wrong harmonic).
**See Fig. 3 for these positions.

Density listed for Laboratory 3 was determined at Laboratory 1.
Material: Inconel alloy 600, 25.4 mm diameter, hot-rolied annecaled rod.

Specimens:
1.1: 6.35 mm diameter cylinder.
1.2: 25.4 mm diameter cylinder.

1.3: 3.18 by 6.35 by 101.6 mm flat strip.
1.4: 25.4 mm diameter cylinder (separate specimen for Laboratory 6).

Results

The results from the Interlaboratory Testing Program are quite
voluminous. The data received from the various laboratories by the
senior author were converted into values of Young's modulus by
use of the various equations presented in the Experimental Proce-
dures section. These values of modulus (and density) are listed in
S1 units in Tables 3 and 4. Finally, bar graphs of the Young's mod-
ulus measurements and the percentage deviations from the average
values of the moduli for Materials A and B are presented in Figs. 7
to 10,

Anaslysis of Results and Discussion

Considering the wide variety of apparatus used in the cight labo-
ratories, the results for dynamic Young's modulus of the two alloys
are encouraging. Tables 3 and 4 show that the moduluc ranges
from 203 t0 219 GP- iur Materiai A and from 156 to 172 GPa for
Material B. The mean and standard deviation for Material A are
213.91 and 4.46 GPa, respectively. It is interesting to note that the

9

deviations about the mean for Material A (Fig. 8) are all positive or
all negative for a particular laboratory. While this result may sug-
gest particular systematic errors associated with the apparatus at
any given laboratory, this suggestion tends to be negated by an in-
spection of the deviations about the mean for Material B (Fig. 10).
Here the deviations for four of the eight laboratories are both posi-
tive and negative.

A closer examination of Table 4 reveals that one of the results
(2.3) for Laboratory 4 is outlying. Indeed, this was precisely the
datum for which a poor signal was noted during testing (see section
also for the comments on anisotropy and texture). Therefore it
seems appropriate to discard this outlying result. When this is
done, the deviations about the mean for Material B group closely
(Fig. 10). The mean and standard deviation for the dynamic
Young's modulus are 159.16 and 2.84 GPa, respectively, for Mate-
rial B.

In connection with the adjustn.ent of the data a very important
point arises. The determination of the density of the specimen is an
intrinsic part of modulus determination for all the techniques
uscc!. Therefore it is necessary to consider the densi-y results from
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TABLE 4—ASTM E28.03.05 dvnamic Young's modulus inierlaboratory study.

Alloy B Raw Data Tuble
Laboratory Specimen E, GPa  Density, g/em’
1 2.1 161.5 8.34 1Al
22 1599 834
2.3 157.2 8.34
2 21 164.1 8.392  Chen/Phillips
23 155.7  8.225
3 2.1 1620 8.34 Lemmens
2.1 161.8 8.34
2.1 160.8  8.34
2.3 158.4 8.34
4 2.1 156.0¢ 8.25 NBS
2.3 172.0** 8.25
5 2.] 156.0 B8.27 Texas A&M (PUCOT)
2.3 162.0  8.26
6 2.2 163.0 8.27 Texas A&M (Kinra)
7 2.1 156.8  8.20 M
2.3 1558  8.17
2.3 158.0 8.17
8 23 189.2  8.26 Modul-R

Density listed for Laboratory 3 was determined at Laboratory 1.
Material: Incoloy alioy 907, 19.€5 mm thick, hot-rolied flat.
Specimens: 2.1: ¢.35 mm diameter cylinder.

2.2: 25.4 mm diameter cylinder.

2.3: 1.91 by 6.35 by 101.6 mm fiat strip.
*Wave propagation paraliel to the length of the specimen.
**Wave propagation perpendicular to the length of the specimen.

THREE COMPONENT
SYSTEM

FOUR COMPONENT TABLE 3—PUCOT cquations for the three-component svsiem.

SYSTEM

(172 NE/p) * = N2
m(8)'? 1(DG)7(DGS)/A
{7(DGY'm(DGS) — 1\DGSYm(DG)}' *
4pL%7(8)

specimen length
frequency

Young's modulus
density

wavelength

resonant period
specimen

drive crystal

gage crystai

mass

DRIVE

<=

a
P

3QOTtLa>o M t=Mmx2~

L T (T T T I T T 1N 1}

A
GAGE

=>
<= =
SPECIMEN

FUSED QUARTZ
SPACER ROD :

SPECIMEN FURNACE

FIG. 5=Scnematic Liszram of the PUCOT. Left-hand side: three-com-
ponent sysiem for measurements a1 room temperature: right-hand side:
Jour-component system for measurements at temperatures above room
temperaiure. Shown is the arrangement with longitudinal quartz crysials.

used, while at others the density was determined from masses and
physicai diniensions of the specimens. That the deviations about
the means for densities are mostly less than 0.08% is encouraging.

To proceed with the final adjustment of the dynamic Young's
modulus data we have used what we ierm common densitnv and

all the laboratories in more detail. Figrees 11 and 12 show bar
charts of density for Materials A and B. For Material A the mean
density was found to be 8.361 g/cm? with a standard deviation of
0.048 g/cm’; the corresponding values for Material B are 8.263
and 0.072' 8/cm’. Again it must be remembered that at some of the
laboratories the Archimedes metiiod of density determination was

romman mathemerics, Common density for the material is the
value obtained by Laboratory 4 (NBS): Alloy A, 8.36 g/cm?; Alloy
B. 8.25 g/em’, (These values are very close to the means given in
Figs. 11 and 12.) Common mathematics is a term indicating appli-
cation of the same equations (including certain correction factors
for shape and aspect ratio of the specimens, given by Spinner and
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FIG. 6—Schematic diagram of the magnetically excited resonance system known as the
Modul-R.
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Tefft |2]) to convert measured values of frequency to values of
modulus for the free-free beam technique (Laboratories 1, 2, and
7) and for the impulse technique (Laboratory 3). With these ad-
justments, the final results are presented in Figs. 13 to 16. For Al-
loy A the mean value of dynamic Young's modulus is 213.3 GPa
with a standard deviation of 3.43 GPa (1.6%). The corresponding
values for Alloy B are 160.59 and 2.37 GPa (1.5%), with the result
for Specimen 2.3 from Laboratory 4 removed.

A further comment on the final adjustments of the dynamic
Young's modulus dats is in order. The value of modulus for Speci-
men Al.3 measured at Laboratory 7 was obtained using the first
overtone rather than the fundamental. This would cause a lowering
of the precision of the modulus value. The standard deviations (1.5
and 1.6%) about the means mentioned above are therefore larger
than are potentislly realizable by the dynamic techniques used.

To put a perspective on the quality of the results from this Inter-
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F1G. 13—Dynamic Young's modulus results for Material A witk adjusi-
menits for common density and common mathematics.
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FIG. 14—Percentage deviations from the mean value of dynamic
Young's modulus for Material A with adjustmenis for common density and
common mathematics.

laboratory Testing Program for dynamic Young's modulus, it is
instructive to look at the results from the earlier round-robin study
done at seven laborataries for static Young's modulus |/7). For the
static modulus on a steel specimen the mean value was 211.3 GPa
with a standard deviation of 5.1 GPa or 2.4%.

There does not appear to be any significant effect of frequency
on the value of dynamic Young's modulus in the materials exam-
ined. Specifically, frequencies as low as 780 Hz (Laboratory 1) and
as high as 15 MHz (Laboratory 4) were used for the modulus mea-
surements, but no frequency dependence was established.

Conclusions

From this study of dynamic Young's modulus measurements,
performed as an Interlaboratory Testing Program involving six
types of apparatus, six different organizations, and specimens
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FIG. 16—Percentage deviations from the mean value of dynamic
Young's moduius for Material B with adjusiments for common density and
common mathematics.

from a well-documented source, we can draw the following
conclusions:

1. All the measurements of dynamic Young's modulus invulved
the basic wave equation (Eq 1) for the propagation of an elastic
wave in an elastic medium,

2. The determination of the mass density of the specimens was
an intrinsic part of the determination of dynamic Young's modulus
for a)} the techniques used in this study.

3. All the techniques (free-free beam, impulse excitation, wave
travel time, ultrasonic pulse spectroscopy, piezoelectric oscillation,
and magnetically excited resonance) yielded values of dynamic
Young's modulus that agreed closely with each other (to within
1.6%).

4. The mean value for dynamic Young's modulus for Inconel
600 (Alloy A) was determined as 213.3 GPa with a standard devia-

tion of 3.4 GPa, while the corresponding values for Incoloy 907
(Alloy B) were 160.6 and 2.4 GPa, respectively. These modulus val-
ues are based on the density values of 8.36 and 8.25 g/cm? for Ma-
terials A and B, respectively, measured at NBS, and on common
mathematical equations for certain techniques used in this study.

5. There does not appear to be any significant effect of fre-
quency on dynamic Young's modulus in the materials tested for
the frequency range 780 Hz to 15 MHz.
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A New Technique for Ultrasonic-Nondestructive
Evaluation of Thin Specimens

by V.K. Kinra and V. Dayal

ABSTRACT—Combining standard FFT methods with conventional
ultrasonics, a method has been developed for measuring the
phase velocity, the group velocity and the attenuation in ultra-
thin specimens (submillimeter or subwavelength in thickness).
A detailed description of this technique is given. The tech-
nique was used on four disparate materials: aluminum, an
epoxy, a particulate composite and a graphite-fiber/epoxy
composite. The method works equally well for thin or thick
specimens, and for dispersive as well as nondispersive media.

List of Symbols

a = a characteristic length; half crack length or
particle radius, mm
¢, ¢, = longitudinal phase velocity in specimen,
mm/ us
¢s = longitudinal phase velocity of wave in
immersion medium (water), mm/ us
¢, = group velocity in specimen, mm/ us
S = frequency, MHz
JS. = cut-off frequency, MHz
Af = frequency resolution, MHz
F*(w) = Fourier transform of f(¢)
G*(w) = Fourier transform of g(?)
h = plate thickness, mm

k = complex wave number = k, + ik;, mm™'

ko, = wave number in water, real, mm-

k, = w/c, wave number in specimen, mm™"

k; = attenuation coefficient, nepers/mm

m = integer; number of complete round trips taken

by the wave across the plate thickness
M = magnitude of a complex number
N = number of digitizing points
Ry = reflection coefficient in medium / from

medium j
T = sampling interval in time domain, ns
T, = signal length, us

Ty = transmission coefficient for a wave incident in

medium / and transmitted into medium j

t = time, us

u = particle displacement

x = distance

0 = normalized frequency, 2« fa/c,

A = wavelength, mm

¢ = normalized wave number, 2xfa/ <c¢,>

V.K. Kinra (SEM Member) is Associate Professor, Depertment of
Aerospoce Engineering, Texas A&M University, College Station, TX
77840. V. Daysl (SEM Member) is Assisiant Professor, Department of
Mechanicel Engineering, North Carolina A& T University, Greensboro,
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@ = density of specimen, g/ml
@o = density of water, g/ml
¢ = phase of a complex number
» = circular frequency, rad/ us
< > = aggregate property of composite

introduction

The classical method of measuring the speed of sound
in nondispersive media is the time of flight method (see
Ref. 1 for example). We note that in a nondispersive
isotropic medium the phase velocity and the group velocity
are identical.? When the material = either dispersive or
exhibits frequency-dependent attenua::»n this method
breaks down and a suitable method then is the so-called
tone-burst method. Here, a burst of pure tone, typically
about ten cycles in duration is used. This places a con-
straint on the specimen thickness; it must be thick enough
5o that the tone-burst reflections from the two faces of
the specimen can be clearly separated in the time domain,
i.e., it should be roughly five-wavelengths thick. For
example in steel at, say, one-MHz frequency, the required
minimum thickness would be about 30 mm. There are
many situations of practical importance where one must
conduct an ultrasonic examination of specimens which
are considerably thinner than five wavelengths. For
example, aircraft and aerospace structures using graphite/
epoxy or metal-matrix composites employ panels as thin
as one mm. Chang ef al.’ have developed a technique for
the measurement of phase velocity in thin laminates. They
perform an FFT of the front-surface and the back-surface
reflections of a signal. The amplitude versus frequency
curve is characterized by a series of resonance peaks. The
peak spacing yields the phase velocity which is the same
as the group velocity. The deviation between the group-
velocity vector and the phase-velocity vector is zero for
wave propagation parallel or perpendicular to the fibers;
it is assumed that the material is nondispersive. This
method requires human analysis of data. Further, one
cannot measure attenuation by this method. More
recently, Heyman* has developed a technique called phase-
insensitive tone-birst spectroscopy. Although this tech-
nique yields excellent results, it requires the use of rather
specialized and sophisticated transducers called acousto-
electric transducers (AET) which are not yet commercially
available.

By combining standard FFT methods with conventional
ultrasonics (using commercially available broadband
piezoelectric transducers) we have been able to develop a
method by which one can measure the phase velocity, the
group velocity and the attenuation in ultra-thin specimens
(submillimeter or subwavelength in thickness). There are
many situations in which one cannot obtain a series of
resonance peaks required by the method of Chang et al.’




Our method works even in the absence of a single
resonance peak. A detailed description of this technique
is the central objective of this paper. We will illustrate the
use of this technique on four distinctly disparate materials:
aluminum, an epoxy, a particulate composite and a
graphite-fiber/epoxy composite. It will be demonstrated
that this technique works equally well for thin or thick
specimens, and for dispersive as well as nondispersive
media.

Theory

Consider an infinite elastic plate immersed in an elastic
fluid (water). A Lagrangian diagram indicating the space-
time location of a wavefront which occupied the position
x = 0 at time ¢ = 0 is shown in Fig. 1. A plane-fronted
finite-duration pulse, Ray 1, is normally incident on the
plate. This results in an infinite series of reflected and
transmitted pulses. The expressions for the reflection and
transmission coefficients of a displacement wave for
perfectly elastic media may be found in Achenbach’s
book.*

Let the displacement in the incident field be given by

u' = fo(wt~ kox) (0))
where fo(s) = 0 for s <0. Here w is the circular frequency
and k, is the wave number of a monochromatic harmonic
wave; Co = w/K,. The displacement field along the various
reflected rays may be written as

Uy = R So(5—53); 5, = 2koa

Uy = TuRay Ta fo(S — 56); 5S¢ = 2koa+ 2kh
@
U6 = TR}, T fo(s — Sio); S1a = 2kea + 4kh

etc.

Here, s = wt+kox, h = b~a is the plate thickness,
R, is the reflection coefficient in medium i from medium
J» Ty is the transmission coefficient for a wave incident
in medium i and transmitted into medium j, k = w/c,
c is the phase velocity in the plate, and

R, = 20— _ _p.
QoCo + @€

T, = 206 _ 2-T,
QoCo + @€

E)

where g, and g are, respectively, the density of water and
the plate material. The entire reflected field, u* = u, +
Uy + o + . ... 0@, may be written as

L.J

u = Rufo(s~5)+ TuRWT, m,: . R fols - s5.)

Su = 2kea+ m2kh )
In an exactly analogous manner, one can write down
2: expressions for the transmitted pulses. With s =w/f —
e = TiaTa fols = 5); 8¢ = h(k — ko)
sy = TuR}, Ty fo(s—5); S = h(3k — ko) 5
#a = Tia RY, T fo(S — Sua); 802 = A(Sk - ko)

etc.

e ——— — — -~ -
- ————

The total transmitted field may be written as
@

u'=T,Ty mgo R fo(s—52); 5 = hI2m + 1) k — ko)

6)
In eqs (4) and (6) m is the number of complete round
trips taken by the wave across the plate thickness .
The Fourier transform of a function f(¢) is defined as

f f(De“dt, ~w<w< oo

F*w) =
x -~ o0
(7a)
with the associated inverse transform given by
l Q0
A = —— FY(w) e™ dw (b)
N X j‘ ®

Analysis for Thick Specimens

We first consider the case of a relatively thick specimen
such that various pulses in Fig. 1 can be clearly separated
from each other in the time domain. Let f(¢) be the signal
corresponding to Ray 2 and g(¢) be the signal corre-
sponding to Rays 2 and 6 combined sensed by a trans-
ducer at x = 0. (This is the so-called pulse-echo mode.)
Then

J() = Rufo(wt — 2koa) 8)
and

g8(t) = TuRy T folwt —2koa — 2kh) + f(1) 9)
Let F*(w), G*(w) and F#(w) be the Fourier transforms
of f(#), g(1) and fo(t), respectively. Then, a straight-
forward application of the shifting theorem for Fourier
transforms yields
F*(w) = Rye 0" F(w) (10)
G*(w) = RuF(w)e o[l - Ty, Tue™™) (1))
and

ﬁ:(:) =1 = T,y Tye 2 (12)

It is emphasized that in the foregoing it is assumed that

the plate behaves in a perfectly elastic manner, i.c., the
wave number Xk is real and ¢ = w/k is a constant. The

WATER

4
1
X wea " xoh

Fig. 1—Various refiections and
transmissions from a plate immersed
in water
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key term in egs (11) and (12) is e~*2** or e~i¥«/< Thus, in
eq (11) if one plots |G*(w)| versus w it will be charac-
terized by a series of resonance peaks whose spacing is
given by A(Qhw/c) = 2x, or,inviewof w = 2%,

=2hAfS 1)

Measurement of ¢ in aluminum using eq (13) is illustrated
in Fig. 2. Here F(w) = |F*(w)| and G(w) = |G*(w)].
Note that G(w) consists of the transducer response,
F(w), superimposed by an oscillation due to e~/2/< term.

A further improvement in the measurement method can
be achieved by plotting [G*(w)/ F*(w) — 1], eq (12). This
is illustrated in Fig. 3. By taking out the shape of the
transducer response we are left with oscillations due to the
constructive and destructive interference between the
front-surface (Ray 2) and back-surface reflections (Ray 6).

Even though eq (12) is derived for an elastic material it
is rigorously valid for a linear-viscoelastic material provided
the damping is small, i.e., in k = k, + ik,, k,/k, < < 1.
This elementary proof is deferred to the Appendix. We
rewrite eq (12) as

e~ = _[G*w)/ F*w)=1)/T,;T:, = Me*®
(14a)
Then, by equating real and imaginary parts,
k(w) = —¢/2h

and

ki (w) = (InM)/2h (14b)
where M = [[((G*(w)/F*(w)]-1]/T\:Tu|. Since
k(w) = w/candw = 2xf

= _Arh _ =
c= e/ and k,(w) (InM)/2h (15)

These are the desired equations for calculating the phase
velocity and the attenuation.

Now consider the transmitted field for a thick specimen.
Two measurements are made. In the first, the specimen is
removed from the water path, i.e., the wave travels solely
through water. Let the receiving transducer be located at
some x = I>b. Then u™<(l,1) m f(t) = fo( wt — kol).
The specimen is now inserted in the wavepath and the

signal due to Ray 4 alone is recorded. Thus, u*(/,¢) =
8(1) = T3 Ty fo(wt ~ kol — 2koa — kh). Then,
LS
Bl = ToTue o a6

10 18

FREQUENCY, £ (MM3)
Fig. 2—Magnitudes of Fourier
transforms of /(1) and g(t) when
puises can be separated

o September 1960

G*(w)e'to ie
If Fo(e)TaTs is set equal to Me'*® then
k(w) = —¢/h (17a)
and
kiw) = (InM)/h (17b)
where M = lF‘( )I /T Ty, . Substituting k, = 2xf/c,
we get
c= 2T and ky(w) = InM/h (18)
(=¢/N

Another variation of this technique is when signals for
both Rays 4 and 8 are quite large. Then the following
approach yields more accurate results because the data
reduction can be done from a single experiment. Let
J(2) and g(¢) be the signals corresponding to Rays 4 and
8, let F*(w) and G*(w) be their Fourier transforms then

_i__l 1 -ilkh
F' () = R} 19)
as before, if we set G*(w)/F*(w) R, = Me', then

eq (I5) can be used to calculate the wave speed and
attenuation. In the following for brevity, these methods
will be referred to as the second/first method.

We note that this method is equally effective for
dispersive media. From eq (14) one plots &, versus w.
A secant to the curve yields inverse of the phase velocity
(phase slowness). For dispersive media a quantity of
interest is the group velocity. This is the speed with
which energy propagates in a medium, ¢, = dw/dk,;
this too can be computed from the phase plot, and eq
(14b) yields frequency-dependent attenuation. Finally, we
introduce a normalized attenuation k,\. This is the
attenuation of a wave over one wavelength. The motiva-
tion for this particular normalization is that for a linear-
viscoelastic material k,\ is independent of frequency.

Analysis for Thin Composites

In this paper the qualifiers ‘thick’ and ‘thin’ are used
in the following sense. When various reflections or trans-
missions corresponding to a short-duration pulse can be
separated in the time domain, the specimen is considered
thick. However, the duration (or length) of the pulse
depends on the center frequency of the transducer.
Hence, with reference to the absolute dimensions of the
specimen the use of the word ‘thick’ is quite arbitrary.
On the other hand the word ‘thick’ is not arbitrary with

SAMPLE ALUMINUM .
0. 502 o G (W) /F () =1
8. 378 an/umes

4 ? 10 13 18
FREQUENCY, £  (MMz)
Fig. 3—Magnitude of
G*(w)/F*(w) - 1 trom Fig. 2,
spacing can be
measured easily from the zero
line crossings

T T T e ——— -~y
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respect to the wavelength, i.e., a specimen is thick if,
roughly, A= 3.
The total reflected field comprising Rays 2, 6, 10, 14
. @ at x = 0is given by eq (12) as

u'(o,t) = g(t) = R, fo(wt —2koa)
+ TuR, T, El Rzzn(.‘-l)fo(wf —~2koa — m2kh)

m=

(20)

Note that Ray 2 cannot be used as the reference signal.
One has to conduct a separate experiment as follows. The
thin coupon is replaced by a thick coupon with the front
surface precisely at x = a. Let the front-surface reflection
be labeled (). Then

f(’) = Ry, fo(wt — 2kea)

F*(w) = Rue™" F3(w)
G*w) = FY(w)+ T2R:;, T, El Rlzl(m-”F:(w) .
m=

e-i(lkoa»n 2kn) (2])
Let
Z = R, e~k (Z[<1 2
Then
G, _TuTu 3 ,.
F* RuR: m=1

Observing that for {Z|<l, (1-2)'=1+Z+2%+
. o, and defining

8 = R R,, (G‘(U) ])

- TuT,, ‘F*w) -
we get
__B
Z= T+8 23)

From Z one can readily calculate the complex-valued .

wave number k(w).

For completeness we include here a variation of this
method. Suppose a thick coupon to obtain a reference
signal is not available (this difficrity will be discussed
later). One can then use a thick specimen of some other
material; we have used a block of aluminum. Let the
acoustic impedance of this material be g,¢,. Let the front-
surface reflection be f(#) = R fo(wt — 2k,a) where the
reMon mffnient R = (Qac.—‘ Q|C|)/(ro. + Q|C|)p
and g(1) is still given by eq (18). As before with

RuRy R G%w) _
p= TuTan "R F'(w) l] @
ZaRje"™=p/14+8 @5

In the following for brevity these methods will be referred
to as the all/first method.

We now consider the transmitted field. Here a second
transducer is used as a receiver at some x = /> b. To
obtain a reference signal the specimen is removed and the
signal through water is recorded.

() = u™(1,0) = fo(wt - kol)

Let g(f) be the rotal transmitted field, Rays 4, 8, 12,
. .. 0. Then from eq (6)

&) = TuT §o RE fulwt = kol - h{@m + Dk - ko))
m=

(26)
G*(w) _ TuTye ko
FY(w) § —R2 e it

@n

We note one major difference between eqs (23) and (27).
Unlike eq (23), eq (27) is a quadraticin Z = exp (— ik h).
This presents some additional numerical problems. These
are discussed next. Equation (27) may be rewritten as

Z*+ZY-D, =0

where
-
Z, = exp(—ihko)
D, = 1/R},

and k, is the wave number in water. Since the phase
velocity in water is known, Z, is known a priori. If the
acoustic impedance of the plate, gc, was known, one
could calculate 7;; and R;;. However, c is precisely the
unknown we are seeking to measure. This problem could
be solved by a simple iteration procedure. An approximate
phase velocity was initially used in the algorithm to
estimate 7, and R,. The quadratic equation (28) is
solved and two roots of Z are obtained. The correct root
is chosen based on the fact that the phase of Z decreases
as frequency increases (for the other root the reverse is
true). This velocity is used for the next iteration cycle.
This procedure converges very rapidly. When we purposely
supplied an initial phase velocity with a very large error
(30 percent), the convergence was found to occur in about
five iterations. More realistically, the wave speed can be
estimated to within five percent. Here convergence to
within 0.01 percent occurs within three or four iterations.
When the value of ¢ obtained by this procedure was
substituted back into eq (28) to calculate attenuation,
k2 was found to be an oscillatory function of frequency
for a linear viscoelastic material, namely, an epoxy. Now,
it is well known that for such a material k,\ is a constant.
The oscillating nature of ;A\ could, however, be readily
explained as follows. A detailed numerical examination of
eq (28) revealed that the calculation of k. )\ is very sensitive
to small variation in the phase velocity c. The oscillations
were due to the fact that the measured velocity was
different from the true velocity. This problem could be
resolved in the following manner. If one takes the absolute
value of both sides, eq (25) can be rewritten as follows.

dxhf 1 TuTuy FY(w) _
e+ 7 R gl -

7 (Riev + 5lg] @9

[

where ¢ = 2h k;M\/c. The terms in eq (29) have been
separated judiciously as follows. The left-hand side (LHS)
is a function of wave speed only while the right-hand side
(RHS) depends on both the wave speed and the attenua-
tion. The RHS is a sum of two exponentials and, there-
fore, is not an oscillatory function of frequency /. On the
other hand, the LHS is the sum of a cosine function of
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frequency and the experimentally determined F*(w)/G*(w)
which was found to be oscillatory. Now if the correct
value of c¢ is not used in eq (29) the periods of the two
terms do not match and the oscillatory parts do not cancel
each other as they would for the correct value of c. With
this in mind, the RHS is viewed as the reference curve
and a numerical search is made around the value of ¢
obtained by the iterative procedrre described earlier, to
minimize the root-sum-square of the LHS. This fixes c.
Now we view the LHS as the reference curve and conduct
a numerical search over a range of k;\ so as to minimize
the root-sum-square between the LHS and the RHS. This
fixes k.

Tinally, it is noted that the theoretical procedures
developed in this section are equally valid for both the
longitudinal as well as the shear disturbances.

Experimental Procedures

Measurement Procedures

A schematic of the apparatus is shown in Fig. 4. The
heart of the system is a pair of accurately matched,
broadband, water-immersion piezoelectric transducers. An
experiment is initiated at time ¢ = 0 by a triggering pulse
produced by a pulser/receiver; the pulse is used to trigger
a digitizing oscilloscope; simultaneously the pulser/
receiver produces a short-duration (about 100 ns) large-
amplitude (about 200 V) spike which is applied to the
transmitting transducer. In the reflection mode it also acts
as a receiver. The received signal is post-amplified (to
about one volt) and then digitized with maximum sampling
rate of 100 MHz (or 10 nanoseconds per point). To
reduce the ubiquitous random errors, each measurement
is averaged over a sample size of 64. A laboratory com-
puter controls all operations of the digital oscilloscope
through an IEEE bus. The built-in signal processor of the
oscilloscope performs FFT on the acquired signals and the
relevant parts of the data are then transferred to the
computer for further analysis.

Calibration Procedures

Since our objective in this research is to estimate damage
in composite materials from a measurement of the ultra-
sonic parameters, accuracy is of prime importance. For
example, one percent error in estimating the phase velocity
may, for some typical laminates, correspond to a ten-
percent error in estimating the remaining fatigue life.
Typically each measurement was repeated about ten
times. Based on one standard deviation we estimate the
errors in our measurement as follows. We can determine

COMPUTER

PULSER/ DIGITIZING
RECEIVER QSCILLOSCOPE

&
SPECTMEN
IVER

WATER DATH

Fig. 4—B8lock diagram of the
oxperimental setup

TRANSMITTER
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velocity in monolithic materials to a precision of 0.1 per-
cent, and velocity and attenuation in heterogeneous
materials to a precision of 0.2 percent and 2 percent,
respectively. The higher scatter in the composite materials
is due to inherent spatial variation in the material
properties. In order to achieve this precision the measure-
ment system was subjected to systematic calibration
procedures. These are described next.

SAMPLING INTERVAL

The analog signal from the transducer is digitized at a
specified sampling interval by the digitizing oscilloscope.
The object of this study was to determine an upper bound
on the sampling interval below which the harmonic distor-
tion was considered acceptable. We quote here the limits
on the sampling interval as specified by the sampling
theorem. ““If the sampling interval T is chosen equal to
Y f., where f is the highest frequency component of the
signal, aliasing will not occur.””” Aliasing is defined as
“‘the distortion of the desired Fourier transform of a
sampled function’’.” An experimental verification of this
statement is given here. Figures 5 and 6 show the amplitude
and phase response of a 10-MHz transducer at sampling
intervals of 10 nS (100 MHz), 20 nS (50 MHz), 40 nS
(25 MHz), and 100 ns (10 MHz). The highest frequency
content of this signal is about 10 MHz and so the sampling
interval of 50 nS would be acceptable from the viewpoint
of aliasing. It is obvious from Fig. 5 that at 10-nS or 20-
nS sampling intervals, the frequency content of the signal
is essentially the same. However at 40-nS sampling inter-
vals, significant distortion of the amplitude is observed;
but the phase remains relatively unaffected. At 100 nS,
both the amplitude and the phase plots are completely
distorted. This would come as no surprise for here we are
sampling only one point per cycle. In this work we have
used either a 10-nS or 20-nS sampling interval.

FREQUENCY RESOLUTION

It is seen from eqs (15) and (18) that wave speed can be
calculated if the slope (¢/f) of the phase versus fre-
quency curve can be obtained. The FFT algorithm
provides the real and imaginary components of the trans-
formed signals and from these the phase is calculated. The
computer can provide the phase angle in the range of
— x/2t0 + x/2 from which the angle in the range of 2«
can be deduced very easily, depending on the quadrant in
which the phaser lies. Hence we obtain a sawtooth-type
phase versus frequency plot. It was observed that for the
signal under consideration, phase increases monotonically
with the frequency. Thus the sawtooth plot has to be
converted to a continuous phase versus frequency curve
before its slope can be obtained to calculate the wave
speed. The computer algorithm developed tracks the
rotation of the phase vector and 2 x radians are added to
the phase each time the vector completes a cycle.

Let the sampling interval be T and the total number of
sampled points be N. The total length of the signal is
To = (N-1)T. Let the frequency resolution be A f, then
Af = 1/Te = 1/(N - 1)T. The consideration of aliasing
fixes 7. Hence N is the only parameter that can be adjusted
to obtain the desired frequency resolution. For example,
if the desired Af = 0.05 MHz/point, T is 10 nS, then
N = 2000 or 2048. The length of a signal can be readily
increased simply by adding zeros at the end of the signal.
Of course, this is accompanied by an increased computa-
tion time.

———————— « ———— — ~————
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TRANSDUCER RESPONSE

Consider a 10-MHz transducer in direct contact with an
aluminum plate. An FFT of the back-wall reflection was
obtained using the procedures outlined in the section
‘Measurement Procedures’ above. The results are presented
in Fig. 7 in the form of magnitude and phase of the
complex-valued Fourier transform. Experience indicated
that satisfactory measurements can be made over a fre-
quency range (or bandwidth) of $ MHz to 11 MHz given
by about 25 percent of the peak amplitude response as
shown in the figure. It was observed that the phase versus
frequency curve over this range is a straight line; outside
this range it becomes nonlinear.

Resuits and Discussions

Wave Propagation in Nondispersive Media

The main objective of this work is to develop tech-
niques suitable for very thin specimens. Therefore we
subjected our techniques to the following critical test. A
thick aluminum plate (2.807 +0.0025 mm) was first
tested using the conventional tone-burst method. Then the
thickness was gradually machined down to 0.258 mm
(about 10 mil, a very thin foil) in five steps. In non-
dimensional terms the thickness was reduced from about
4.4 to 0.4 wavelengths; a frequency of 10 MHz was used.
At each step ¢ was measured. We could have used five
different samples. Instead we adopted the foregoing
procedure in order to ensure that we are always testing
exactly the same material. The density was measured by
the Archimedes principle. Our estimate of the error in
density is +0.015 percent. The results are presented in
Table 1. The first measurement was made using the
conventional tone-burst method."* The time-domain signal
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Fig. 5—Amplitude response of a
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is shown in Fig. 8(a). A particular peak (say the fourth
peak) near the center of the tone burst is selected as the
reference peak. The twice transit time, 24/c, could be
measured to an accuracy of 1 nS. Our estimate of error in
the phase velocity is 0.2 percent. See Ref. 10 for a detailed
error analysis. In the second measurement the tone burst
was reduced to about one cycle; see Fig. 8(b). Note that
the pulses can be clearly separated. The second/first
method, eq (15), was used to analyze these data. Since
only the first two pulses are needed for data analysis, the
remaining pulses are electronically gated out or nulled.
In the third measurement, the data analyzed remain the
same, i.e., Fig. 8(b). However, the all/first method, eq
(27), is used. In other words, g(¢) is now viewed as the
sum of all transmissions. For the remaining measurements
the specimen was gradually machined down. The all/first
method was used to analyze the data. The pulses for
h = 1.686 mm are shown in Fig. 8(c). Note that the
conventional tone-burst method can no longer be used.
Though both methods developed in this work can be
used, we used the all/first method. The pulse for the next
three thicknesses, & = 1.00], 0.613 and 0.258 mm are
shown in Figs. 8(d), 8(e), 8(F), respectively. Because of the
reduced thickness the pulses cannot be separated in the
time domain. Therefore, even the second/first method
cannot be used; here we have to use the all/first method.
For the thinnest specimen the round trip time is only
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82 nS; the pulse duration is roughly 200 nS. This gives rise
to what appears to be ‘ringing’ in Fig. 8(f).

With reference to Table 1, the average of all the
measurements is 6.342 mm/ s +0.25 percent. We con-
clude that the all/first method developed for ultra-thin
(subwavelength) specimens and the second/first method
for moderately thin (about one wavelength) specimens
yield results which agree to 0.25 percent with the con-
ventional tone-burst method. (We hesitate to make
absotute claims on accuracy because for the given piece of
aluminum we do not know the true wilue of the phase

velocity.)

The ideal method for ‘calibrating’ a new experimental
technique is to use it to measure a quantity which is
known with a ten times better accuracy. Unfortunately,
the National Bureau of Standards has not yet developed a
standard for acoustic velocity (or elastic modulii). Our
laboratory did, however, participate in a six-laboratory
ASTM round-robin conducted by Alan Wolfenden''
(Department of Mechanical Engineering, Texas A&M
University, College Station, TX 77843). This allowed us
an opportunity to compare our error estimates with those
of the others. The material tested were two nickel-based
alloys; see Table 2 for a material and geometric descrip-
tion. Since these specimens are very, very ‘thick’ (several
wavelengths), the second/first method, eq (15), was used.
Furthermore, shear velocity was also measured. Here a
shear (or Y cut) transducer was directly cemented onto the

TABLE 1—TEST RESULTS ON ALUMINUM SAMPLE

Material:  Aluminum
Wave Type: Longitudinal
Mode: Transmission
Frequency: 10 MHz

Density: 2.8177 +0.0004 g/mi

h  hix c elc Technique Reference
mm mm/as percent Figure
2807 4.4 6.3572 Toneburst 8a
2807 4.4 6.3239 0.013 Second/First 8b
2807 4.4 8.3275 0.010 All/First 8b
1.686 2.7 6.3461 0.040 All/First 8c
1.001 1.6 6.3538 0.030 All/First 8d
0613 0968 63504 0.130 All/First 8e
0258 0.4 6.3231 0.140  All/First 8f

metal specimen using a shear couplant. Ignoring the ‘main
bang’, the remaining reflected signal was collected. From
the measurements of the longitudinal and shear velocity,
¢, and c,, and density, g, the elastic constants E and »
can be readily calculated. The results of the round-robin
test are presented in Table 3. Reasonably good agreement
(within 2.5 percent) is observed between the results ob-
tained in different laboratories using different techniques.

Next, we have tested our experimental method on a
medium which is nondispersive but attenuative. An epoxy
(EPON 828Z) was selected for this purpose. The results
are pwsented in Table 4. Note that three frequencies,
spanning nearly a decade, were used. The phase velocity
measured by the tone-burst method on a thick specimen
is 2.915 mm/ us and agrees very well with that measured
with the all/first technique.

Wave Propagation in Dispersive Media

Finally, we tested our experimental procedures on a
material which is simultaneously highly dispersive as well
as highly attenuative. Towards this end we tested a ran-
dom-particulate composite consisting of lead spheres in an
epoxy matrix. These composites have been described in
Refs. 12 and 13. Transducers with 0.25-MHz center fre-
quency were employed. The second/first method in
through-transmission mode, eq (16), was used.

Kinra'* has shown that wave propagation in these
composites occurs along two separate branches: (1) the
low-frequency, slower, acoustical branch along which the
particle motion is essentially in phase with the excitation,
and (2) the high-frequency, faster, optical branch along
which the particle motion is essentially out of phase with
the excitation. The two are separated by a cutoff fre-
quency which corresponds to the excitation of the rigid-
body-translational resonance of the heavy inclusions. This
occurs when k,a = 0(1), where a is the inclusion radius.
Around the cut-off frequency both the phase velocity and
the attenuation change dramatically with frequency. This
is what makes this composite such an interesting material
to study using our technique which was developed
especially for dispersive media.

The results for a dispersive material are presented now.
In Fig. 9 F*(w) is the received signal with the specimen
removed while G*(w) is the signal with the specimen in
place; T is the volume fraction of inclusions. The dip in
the amplitude of G*(w) corresponds to the cut-off fre-

TABLE 2—RESULTS OF ASTM ROUND-ROBIN TESTS OF Ni-BASED ALLOYS

T

Sample t: inconel Alloy 600
Composition: NI 37.48, C 0.01, Co 14.38, Nb 4.71, Ti 1.48, Fe 41.98
Test Frequency: 5.0 MMz
Mode: Reftect
Sample 2: incoloy Alloy 907
Compoeition:  Ni 74.91, Cr 15.48, C 0.08, Fe 9.53
h Q -] (3 E
Sample mm g/mit mm/ss mm/xs GN/m? v
1.2* 6.203 8.371 5.872 3.161 2169 = 0.14 percent  0.2900 = 0.20 percent
14 6.388 8.373 5.877 3.163 218.8 = 0.13 percent 0.2960 = 0.20 percent
219 18.048 8.287 5.2713 2.7308 163.0 = 0.28 percont 0.3153 4+ 0.18 percent

*The first dight (1 o 2) refers 10 the alloy while the second digit (1-4) is merely to identify different physicel specimens.
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quency. The present measurement, f, = 0.21 MHz, agrees
quite well with the ecarlier measurement'? using the con-
ventional tone-burst method. We now introduce a nor-
malized frequency @ = k,a = 2xfa/c, and a normalized
wave number ¢ = <k, >a = 2xfa/<c,> where
< > refers to an aggregate property of the composite
(an ensemble average). Figure 10 shows the frequency
versus wave number plot. As expected,'’ along the
acoustical branch at low frequencies the behavior is non-
dispersive; a straight line fitted through the data points
passes through the origin ( <c, > /¢, = Q/§). The same
was noted at high frequencies along the optical branch.
These two observations serve as critical checks on the
accuracy of our measurement. The normalized phase
velocity is given by the slope of the secant, <c¢,> /¢, =
9/, and the group velocity is given by the siope of the
tangent, <c¢,>/c, = dQ/d§. The discrete tone-burst
data from the earlier work'*"'* are also plotted; the agree-
ment is considered quite satisfactory. The present tech-
nique is tremendously faster. The entire dispersion and

TABLE 3—COMPARISON OF ASTM ROUND ROBIN
TESTS FOR THE YOUNG'S MODULUS, E

Lab/Sample 1.1 12 13 14 21 22 23

1 2180 2169 2185 — 1615 1599 157.2
218.0
218.1
2 2105 209.2 — — 1641 — 1557
3 2188 2160 2175 1820 —
2170 — 1618 — 1584
216.2 160.8
217.3
4 2120 — 2050 -— 1560 -— 1720
5 2156 -~ 2142 — 1560 — 1620
B[thiswork] — 2169 — 2166 1830 — -
7 2030 - 2103 — 1568 — 1558
158.0

Units for above values: GN/m?

Lab. 3 impulse Fourier

Lab. 4 Pulse-Echo-Overlap Ultrasonic

Lab. 5 Piezoelectric Ultrasonic Oscillation (PUCOT)
Lab. 6 This work

TABLE 4—TEST RESULTS ON EPON 828-Z EPOXY

Material:  Epon 828-Z epoxy

Specimen thickness: 1.869 mm = 0.0025
Specimen density:  1.2080 + 0.0004 g/mi

Test Wave
Frequency Speed K A ¢  TYechnique
MHz mm/as percent percent

1.0 2874 01 01340 1.4  All/First

5.0 2004 014 00024 15 All/First
10.0 2018 008 00078 1.0 All/First
100 2018 024 0087 22 Tone Burst

attenuation curve is produced in a single experiment.
Another major advantage of this method is as follows.
When one uses the tone-burst method, each point suffers
a scatter due to random errors; see Fig. 10. In the present
method the whole curve may shift up or down but the
shape of the curve will not be altered by the random
errors. Here we are mainly interested in the shape of the
dispersion curve. Figure 11 shows the normalized phase
velocity versus frequency. The arrow labeled HASHIN is
the velocity calculated from the lower (appropriate) static
bound due to Hashin and Shtrikman.!* The agreement
between the theory and the low-frequency results is
considered quite satisfactory. As Q increases the effective
inertia of the lead spheres ( ~ gw?) increases and the
phase velocity decreases. At very high frequencies (it is
conjectured) the inertia becomes so large that the spheres
become essentially motionless. Thus they no longer con-
tribute to the inertia of the composite as perceived by the
effective wave. Hence the velocity increases dramatically
across the cut-off frequency and becomes frequency-
independent at very high frequencies. Figure 11(b) shows
the group velocity, i.e., the speed with which energy
flows in a composite. As expected, the group velocity is

1.2
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E=S. 4x
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8
g - 6
z
o
<
T .3

o
.1 .15 .2 .25 .3 .35 .4
FREQUENCY, £ (MHz)

Fig. 9—Magnitude of F*(w) (FFT of signal
through polystyrene delay rod) and G* (w)
(FFT of signal through polystyrene and lead/
epoxy specimen). Note the dip in amplitude at
the cut-off frequency, fc
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Fig. 10—Frequency @ = k,a, and wave number
£ = <k, >a, curve for a dispersive lead/epoxy
specimen, Circied points are data from Ref. 12-14
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essentially constant at low and high frequencies. Around
the cut-off frequency, 0., it undergoes large fluctuations.
Theoretically, ¢, — o at two points around the cut-off
frequency. Perhaps the most interesting feature is that the
group velocity becomes negative around Q., i.c., as the
wave propagates in the positive x direction, the energy
flows in the negative x direction. In Fig. 10 this corre-
sponds to those points on the curve where the slope is

In Fig. 12 we have plotted attenuation versus frequency.
The peak in the curve defines the cut-off frequency. For
comparison k,\ for the neat epoxy alone is 0.13 which is
negligibly small compared to the peak attenuation. Thus
all of k. \ may be attributed to the scattering effects.

QNDE of Damage in Composite Materials

We now demonstrate the application of our technique
to fiber-reinforced composite materials. Graphite/epoxy
AS4/3502 cross-ply [0,/90,/0,), laminates were tested.
These were subjected to monotonic tensile loading. As a
result transverse cracks develop. Edge replication was
made to obtain a record of the transverse cracks. The
loading was interrupted at several points along the load
axis, the coupon was subjected to an ultrasonic examina-
tion and the loading was resumed. The second/first
method in the reflection mode, eq (15), was used. In Fig.
13 we have also shown the portion of the edge replication

<cl»/c1

s .25 .38 . 45 .S5
FREQUENCY, f1
Fig. 11(a)—Normalized phase velocity and
trequency curve for the dispersive lead/epoxy
specimen
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{
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which is illuminated by the ultrasonic beam. The number
of cracks seen by the beam is also listed. Note that we
have not plotted the attenuation k,\ but rather the
changes in k;\ caused by this damage. To guard against
fortuitous results three different frequencies were used,
namely, 2.25, 5.00 and 7.50 MHz. We note that attenua-
tion changes quite significantly and monotonically with
the number of transverse cracks. We also note that in the
range of frequency tested, the attenuation decreases with
frequency. This may be attributed to the fact that these
experiments were conducted at k@ = 1.23, 2.70 and
4.02, where a is the half crack length, at 2.25, 5.00 and
7.50 MHz, respectively. Figure 14 shows the longitudinal
phase velocity at the same three frequencies. Within the
errors of measurement, +0.2 percent, the phase velocity
remains constant with damage. This is rot at all surprising
in view of the fact that here the wave vector (or the
particle displacement vector) is paraliel to the crack face,
i.e., the crack-wave interaction is very weak. Thus we
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Fig. 12—Normalized attenuation and frequency
curve. Note a very high attenuation (large energy
absorption) due to dispersion at the cut-off
frequency, Q.
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conclude that for the present case while the attenuation is
sensitive to the presence of transverse cracks, velocity is
not. We have presented here just one example of the
application of the new technique to uitrasonic NDE of
fiber-reinforced composites. A detailed investigation of
the problem has been carried out and the interested
reader is referred to a follow-up paper.'*

Conclusions

We have described a new experimental technique which
can be used to measure phase velocity and attenuation of
ultrasonic waves in very thin plates (down to a thickness
which is three orders of magnitude smaller than the wave-
length). We emphasize that in the development of this
technique we have taken a ‘black-box’ approach, i.e., it
would work for any material so long as it behaves in a
linear-viscoelastic material and the attenuation is not large.
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Appendix

Consider one-dimensional monochromatic, time-
harmonic wave propagation along a rod made up of a
linear-viscoelastic material, e’(“*"*)_ At any frequency w
the complex-valued wave number is k(w) = k,(w) + ik (w).
If attenuation is small the phase velocity ¢ = w/k,; k, is
the attenuation, i.e., the amplitude of the wave decays as
e™*2* Now suppose a pulse is propagating down this rod
and is given at x = O by f(7). Let

FYw) = 4r‘ fne“dr (A

Then

Jr u.ndw (AZ)

For the sake of this discussion f(¢) may be viewed as an
infinite sum of ‘wavelets’ of the type

sy = (@l \/“2’_‘3“’ ) e (A3)

Consider a propagating monochromatic ‘wavelet’ of
complex amplitude, ﬂvé—“_ﬁe““""". In eq (A3),
T

J(1) may be viewed as an infinite sum of such ‘wavelets’
at x = 0. Furthermore, at some arbitrary x the ‘wavelets’
may be summed up to yield

g(n = [: (ﬂﬁg—?—"’ pmits) e’

If G*(w) is the Fourier transform of g(¢), then
G*(w) = F*(w) '™

or

G.! 0! = e-thx
F*(w)

We have shown, therefore, that eq (12) which was
originally derived for a perfectly elastic material is valid
for a linear-viscoelastic material provided the attenuation
is small (k,/k, <0.1) which is generally the case with

d ng materials and certainly is the case for all
materials tested during this work.
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ABSTRACT

We consider the propagation of Leaky Lamb waves in a plate consisting of
a general balanced symmetric composite material. The problem has been
examined both analytically as well as experimentally. An exact solution for
the dispersion equation was obtained. Numerical results for complex~valued
wavenumber were obtained for an isotropic material (uluminum) and a [0/903]s
Graphite/Epoxy laminate. Excellent agreement for the isotropic case and a
satisfactory agreement for the anisotropic case between the theory and

experiment was observed,
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INTRODUCTION
Lamb waves are waves propagating in the plane of a plate with traction
free boundaries. In the case of plane Lamb waves the particle displacement
is in two directions:(1) the wave propagation direction, and (2) the
thickness direction. The third component is zero because the plate is
considered infinite in the plane of the plate. The governing equations for
the Lamb waves were first derived by Prof. Horace Lamb in 1917 in his famous
work'. These equations were quite complicated and a solution cou;d be
obtained only in the short and 1long wavelength 1limits. The first
comprehensive solution was obtained by Mindlin® in 1950. Later, Viktorov® in
his book dealt with the solution of Lamb waves in great detail. He provided
the dispersion curves for a material with a Poisson's ratio of 0.34.
According to Krautkramer et al* and Viktor-ov3 the dispersion equations for
Lamb waves in a plate immersed in a fluid were derived by Schoch®. Merkulov®
has shown that if the density of the plate is large compared to that of the
immersion fluid then the inertia effect of the fluid is negligible. He
obtained a first order approximation solution for the complex part of the
wavenumber i.e. attenuation. Plona et al7 have shown that when the plate
density is comparable to the fluid density, as in the case of plexiglas in
water for example, then the inertial effects are significant and cannot be
neglected.
Most of the work on Lamb waves has been motivated by the ultrasonic flaw
detection of sheet material. Various researchers have studied the Lamb
waves and used them for nondestructive evaluation (NDE) of homogeneous

plates.s'12

This is by no means an exhaustive list of the work in this
field. With the advent of composites as a major structural material,

especially in the aerospace industry, the attention of the NDE community has




shifted towards the composites and many of the NDE tools available for the
testing of isotropic materials have been applied to the composites. Quite
naturally, ultrasonics has also been used for the NDE of compusites with
varying degrees of success. The major difficulty in case of the composites
arises from the fact that the theoretical analysis of wave propagation is
considerably more difficult. For example, in an isotropic material the wave
propagation and energy propagation directions are the same, in an
anisotropic material the two are, in general quite different.

The‘general elastic wave problem in a layered composite is very complex
and an exact solution is neither possible nor needed. Various simplified
theories have been proposed which tend to make the calculation of dispersion
relations manageable. The simplest ones to be proposed were the effective

3,18 Here, the geometrically weighted average of the

modulhs theories’
constituent properties are used as the average material constants. Habegar
et alls, have replaced the composite plate with an equivalent homogeneous
anisotropic plate and derived the Lamb wave displacement relations using the
effective stiffness matrix. They have utilized these equations for the
measurement of the nine elastic constants of paper'.i6

17-19 pave been proposed to account for the dynamic effects

Some models
of the propagating wave in the plates. These models incorporate the
influence of the microstructure and anisotropy. One such ‘effective
stiffness” theory was proposed by Sun et al’” The fiber and matrix
displacements are expressed as linear expansion about the mid-planes of the
lavers. The continuity relations take into account the dynamic interaction
of the layers. Bedford et al’® have proposed a diffusing continuum theory

where the constituents are modeled as superimposed continua which undergo

individual deformations. These deformations are then coupled together in a
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dynamical process. The theory proposed by Chementi and Neyfeh19 calculates
the effective homogeneous transverse isotropic elastic behavior of a
unidirectional composite in the long wavelength 1limit, using a two-step
procedure based on alternating layered media. These results were then
applied to a fluid-loaded anisotropic plate which is assumed tc approximate
the unidirectional fibrous composite laminate. The first limitations in all
these theories is that they only consider ideal unidirectional composites
with waves travelling in the fiber direction. Practical laminates, however,
are cross-ply and angle-ply laminates and the effect of waves in these
laminates becomes exiremely complicated. The second limitation is that these
theories have not considered the effect of fluid immersion and hence
attenuation due to the leakage into the surrounding medium has been
neglected.

As noted earlier, Habegarls calculated the dispersive equations for a
balénced symmetrical laminate in vaccum (i.e. traction free boundary
conditions). The object of the present work is to extend his analysis to the
case of a laminate immersed in a liquid. The equations have been written in
a form so that they can be used in conjunction with the effective stiffness
matrix generated by any theory. The composite plate is replaced by an
equivalent homogeneous anisotropic plate. Closed form dispersion equations
are derived for both the symmetric and antisymmetric modes of Lamb wave
propagation; an exact nmnumerical solution 1is given. Due to particle
displacement normal to the plate, waves are also set up in the surrounding
fluid. This is the mechanism Ly which energy "leaks" from the plate into the
liquid; hence the term "Leaky Lamb Waves". At the risk of stating the
obvious, the wavenumber is complex; the imaginary part is the attenuation

and is a measure of the energy leaked into the liquid. Stiffness matrix
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calculated from the "effective modulus” theory has been used for the results
presented here. Theoretical results obtained from the dispersion equation
have been experimentally verified by tests performed on steel and aluminum
plates. Excellent comparison between the theory and experiments was
obtained. Finally, the theoretical solutior for a composite laminate has
been verified by tests performed on a [0/903]s Graphite/Epoxy composite
plate.
I. THEORY

The development of the dispersion equations has traditionally been
approached in two different ways. First, as developed by Lamb, the particle
displacement U is written in terms of a scalar and a vector potential. A
plane harmonic wave propagating in the plane of the plate is assumed, which
allows the potential to be written so that the separation of variables
technique can be used. The solution of potential equations is then used to
satisfy the boundary conditions and the dispersion equation, linking
wavespeed and frequency, is obtained. The second approach, namely, the
method of partial waves, is more recent and is followed by Achenbach.ao
Harmonic waves can travel in a plate by reflecting back and forth between
the two plane surfaces. These waves combine in such a manner that in the
steady state a wave which consists of a travelling wave in the plane of
plate and a standing wave in the thickness direction is obtained. This
approach is more fundamental in that it directly provides the wave solution
and results in a clearer picture of the nature of the wave propagation. In
the following the second approach has been used. Since all the tests are
performed under water, wave propagation in a plate immersed in a fluid is
considered and suitable boundary conditions are applied.

A liquid-borne longitudinal wave incident on an unbounded plate is shown
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in Fig. 1. Shown also are the mode-converted longitudinal and shear waves in
the plate. The waves in the liquid along with the waves in the plate must
sustain themselves to form a steady-state wave paltern in the plate. The
conditions of the continuity of the displacements and equilibrium of forces
at the plate-fluid interface have to be satisfied. The coordinate directions
used here are the standard ones used in the composites literature:
directions 1 and 2 in the plane of the plate while 3 normal to it.

For any symmetrical composite laminate the stress strain relation can

be written as

r 4 N r 3
o C C C 0 0 C >
11 11 12 13 16 11
o C Cc o 0 C €
22 21 22 23 26 22
3| = C31 c:sz C33 0 Cas €3 (1)
0'23 0 0 0 2C“ C4s 0 823
o 0 0 0 o 2C_ 0 €
31 54 55 31
o C C C 0 0 2C €
L 12 | 61 62 83 66| L 12

The strain displacement relation can be written as

CU = (Ux,;+U),1)/2 for 1,3=1,2,3 (2)

The equation of motion in an elastic medium is

"~ W

cru,fp()l i=1,2,3. (3)

j=1

A plane wave travelling in an arbitrary direction, x ,may be written as

U= Uo expli(k.x~wt)] (4)

where U is the displacement vector, Uo its amplitude and k 1is the
wavenumber vector.

We now assume a plane strain condition considering an infinite plate.
The displacement U2 and all derivatives with respect to y vanish.
Substituting Egs. (1), (2) in Eq.(3),

pUl=C11U1,1‘+C13U3,31+C55(U1,33+U3,13)' (5)




Py -Caaua 33 C13U1,13+C55(U1.13+U3.11)' (6)
For a plane wave with displacements in the x and z directions only, the
displacement components, U1 and Uz' can be written from Eq.(4), as
U1=Uloexp[i(kxx+kzz-wt)]. (7)
and U3=U3°exp[1(kxx+kzz-wt)]. (8)
where U10 and U30 are the wave amplitudes
Substituting Egs. (5),(6) in Egs.(7},(8)
2_ 2
pU w —C U k +(C +C )U k kz+C55U10kz (9)
and pU o¥ —CssUaokx+(C +C )U k kz CaaUaokz (10)
Let us define R as
_ 2 2_ 2
R-Uao/Uw_(pw L Csskz)/(css+c1a)kxkz (11)
Eliminating U10 and U30 from Egs.(89), (10) we get a quadratic equation
for k2 in terms of k and the elastic constants as

—k ®(-BL(B 4931’2

Y/s2 (12)
where,
B=[(C__/p)(C. /p-w>/k2)-(C,_/p)(2C__+C._)/p-C__w>/pk-1/{(C_.C__)/p%}
33’ 117° x 13’P 55 13 P gs® PNy az~ss’ P
and,
_,.2 2 2,2 2
D=(w /kx Css/p)(w /kx C11/p)/{(C33C55)/p }.
Let us define kzp and kzm as the two values of kz obtained from Eq. (12)
with + or - signs. Also Rp and R be the value of R when kzp and kzm,
m
respectively, are substituted in Eq.(11). The equations derived above are
for bulk waves travelling in an wunbounded medium. These bulk waves
travelling in the plate add up, such that, subject to the proper boundary
conditions, the plate wave solution is obtained. The two possible plate wave
displacements have the following forms

U1=exp(i(kxx—wt)}[Mexp(ikzpz)+Nexp(-ikzpz)+Pexp(ikzmz)

+Qexp(—ikzmz)] (13)




U3=exp(i(kxx-wt))[Rp(Mexp(ikzpz)—Nexp(—ikzpz))+
+R {Pexp{ik 2z)-Qexp(-ik z)}] (14)
m m zm
where M,N,P,Q are arbitrary constants.
The boundary conditions to be satisfied for a plate of thickness 2d are
033=C33U3'3+C13U1’1=—p at z=#d, (15)
and,
0 at z=2d. (186)

o =C U +C U =
31 S5 1,3 S5 3,1
That is, the normal stresses in the plate and the liquid are equai and
the shear stresses on the plate surface are zero as the fluid does not
sustain shear. In addition, the continuity of diplacement demands,
U=W at z=xd (17)
where WL is the displacement in the liquid.

Substituting Egs.(13),(14) in Egs.(15),(18), the following set of

equations is obtained,

MGX + NG/X+PGY + QG /Y = ip(z=d) (18.1)
P P m m
MG/X+NGX +PG/Y+QGY = ip(z=-d) (18.2)
P P m m
MHX - NH/X+PHY ~-QH/y =0. (18.3)
P P m m
MH/X-NHX +PH/Y-QHY =0. (18.4)
P P m m
where G =C__k +C k H =k +k R ;
p,m 33 zp,m 13 x p,m 2zZp,m X p,m
and X=exp(ik d); Y=exp(ik d).
zp zm

The wave motion in the fluid satisfies the equation

2 2
a¢L a¢L 2
2

+
8z

¢ =0. (19)
dx 2 L 'L

where kL=w/cL is the wavenumber and c, is the wavespeed in the fluid.
The form of the potential ¢L in the fluid to satisfy Eq.(19) is
¢ = ¢ expli(k x+k z-wt)]. (20)
L [o] x z

Substituting Eq.(19) in Eq.(18) it can be readily shown that

“wy

et B+ Sme bt




k2 = kI
The potential ¢L corresponds to a wave in the fluid which propagates
along the plate in the x-direction and decays exponentially along the
z-direction. This wave in the fluid has to be compatible with the Lamb wave
in the plate. It means that this wave must pursue a path along the x-axis
with a velocity equal to the phase velocity of the Lamb waves. The

displacement in the fluid, WL. can be calculated from the potential by

8¢

= L:' i -
WL e 1kz¢oexp[1(kxx+kzz wt)]. (21)

Applying the boundary conditions Eq.(17) to Egs. (14),(21) and (18.2)
we get

mM+nN+rP+sQ=ikz¢oexp(ikzd) (22)

-nM-mN—sP—rQ=—ikz¢0exp(—ikzd) (23)

where m,n = *R exp(ik d) and r,s = R exp(*ik_d).

P zp m zm

From Egs (18.3) and (18.4) we can write

aM-bN+cP-eQ=0. (24}

bM-aN+eP-cQ=0. (25)
where a,b = H exp(¢ik d) and c,e = H exp(*ik_d).

P zp m zZm

From Eqs.(24) and (25) we get

N=[ (ae-bc)P+(be-ac)Q]/(a%+b%)=N1.P+N2.Q (26)
and,
M=[ (be-ac)P+(ae-bc)Ql/(a®+b?)=N2. P+N1.Q (27)

where Ni=(ae-bc)/(a’+b%) and N2=(be-ac)/(a’-b’).

Substituting the values of M and N into Egs.(22) and (23) we can write
(g+1)(P+Q)=1k ¢ [exp(ik d)+exp(-ik d)] (28)

where g=mN2+nN1+4r and 1l=mN14nN2+s.

Similarly substituting the values of M and N into Egs.(18.1) and (18.2),
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P+Q=1{p(z=d)+p(2=-d)}/(F1+F2) (29)

where F1=N2.G .X+N1.G /X+G .Y; F2=N1.G .X+N2.G /X+G /Y.
P 4 L] P P m
Comparing Eq.(28) with Eq. (29)
p(z=d)+p(=-d) k ¢ [expl{ik d)+exp(-ik d)]
= z 0 z z (30)
FI+F2 (&)

The pressure in the fluid can be calculated from the potential

¢Lfrom the relation

af¢ af¢ A
P=A { S EA— } (31)
ax az
which gives
- o) = - 2.2 . _ s
p(z=d) + p(z=-d) AL(kx+kz)¢o[exp(1kzd) exp( 1kzd)] {32)
Substituting Eq.(32) in Eq. (30)
[(k3-k2]172 0 02
L x + L =0
g+l F1+F2 )

Simplification of F1+F2 and g+h, substitution into Eq.(33) and rearran-

ging the equations give, for the symmetric mode,

tan(k d) G .H ip witan(k d) H

2~ _ T m L sz2 1/2[_ _™"R +R ] = 0. (34)
tan(k d) G .H p(G /p)[k°-k°] H P "

zm m p m x L p

Similarly, we can show that for the antisymmetric mode the governing

equation is

tan(k_d) G .H 1przcot(k d) H
- P m 2”’2 1/2‘[J R -R ] = 0. (35)
tan(k d) G .H p(G /p) [k°-k"] H P "
zp m p m z L P

It is quite laborious, but not difficult, to show that for an isotropic
material Eqs.(34) and (35) reduce to the equations (II.43) and (II.44)
obtained by Viktorov>

The first two terms of Eqgs.(34) and (35) represent the dispersion

relations for composite plate in vacuum. The third or the complex part of

the equations is due to the immersion of plate in a liquid. It is observed




that almost all factors in the equations are complex and the required root,
kx. is also complex. These complex transcendentazl equations were solved by a
numerical algorithm which is described next.
I1. SOLUTION METHODOLOGY FOR DISPERSION EQUATIONS

The solutions of the dispersion equations for composite plates immersed
in a fluid are obtained by the following two step procedure:

1. The correct value of k, of course is complex. However, as a po{pt of
departure, k is taken to be real and the dispersion equation for a plate in
air is used. In other words, the imaginary part of Eqs.(34) and (35) is
ignored. The roots for the remaining equation are obtained by a linear
search method. The search is conducted in small steps varying either the
wavespeed or the frequency while keeping the other fixed. Both modes of
search are useful depending on the gradients of the dispersion curves in a
particular region. The roots are then calculated precisely by the bisection
technique.z2

2. In the second step a search is made for the complex roots of k, i.e.
for

k = k1+ik2 (38)
Substituting in the complete dispersion equation (34) or (35) for an
immersed plate, we can write these equations in the form
Re[ki.kzl + 1 Im[kx,kzl = 0, (37)
where Re and Im are the real and imaginary parts of the dispersion
equation. Now for a solution to exist both the real and imaginary parts must
be simultaneously zero, i.e.
Re(kl,kzl = 0. (38)
and

- 3\
Im{kz'kzl 0. (39}

11
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Thus we have two transcendental equations with two unknowns k‘ and kz'
The modified Newton’s (Secant) method is used to arrive at the roots of
these equations. The initial estimate of the roots is: k1 as obtained from
step one (k1 for the Lamb wave in the plate in air) and k_=0. Now, k is
incremented in steps of 0.1 and k2 in steps of 0.01. Since the Newton's
method converges quadratically, the roots are obtained fairly rapidly. The
nature of these equations is quite complicated and at places roots are_glose
together. It is difficult to study the uniqueness and convergence of all the
roots for such a complicated equation. Hence, it is quite possible that
depending on the gradient of the equations and roots being close to each
another, the solution may converge to some nearby root. To guard against
this occurrence, we drew the complete dispersion curve diagram. It was found
that in general the convergence was unique and rapid. Only at a few points
the solution did not converge and some times it would converge at a nearby
root. These points could be easily identified from the dispersion diagrams
by using the following criterion: since the dispersion curves in air are
smooth, it is reasonable to expect that the dispersion curves for the plate
immersed in the fluid will also be smooth.

In the foregoing the effective elastic moduli of the plate were
calculated using the classical laminate theory. Heuristically, when the
wavelength is very large compared to the plate thickness, one would expect
our calculations to be a fairly accurate representation of the reality. On
the other extreme, when the wavelength is short compared to the plate'
thickness and, more importantly, where it 1is comparable to the plate
thickness, clearly the theory is expected to break down for now the wave
begins to "see" the individual plies. A question of practical significance

is: Where does the transition occur? A systematic examination of the issue is
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beyond the scope of the work. However, in the following we have probed this

issue to a limited extent. This was the motivation for carrying out the
experiments described next. It will be shown that the elementary "rule of
mixtures" theory gives surprisingly good results upto ktd = 3.5, where kt is
the shear wave number.
II1I. EXPERIMENTAL PROCEDURE

Shown in Fig.2 is a block diagram of the experimental setup. The pulse
generator produces a trigger signal which is used to trigger the signal
generator and also set the initial time (t=0) for the digitizing
oscilloscope. The signal generator is used to produce a tone burst which is
about 10-20 cycles long. This wave train is amplified to about 200 volts and
fed into the transmitting transducer which launches a longitudinal wave in
water. This wave is mode converted into a leaky Lamb wave in the specimen.
These Leaky Lamb waves are sensed by the receiver which can be placed on
either side of the specimen, see Fig. 3. Only the transmission mode (Fig.
3a) was used in this work. The signal from the receiver is amplified to
about 1 volt and fed into a digital oscilloscope. All measurements are made
with a reference peak near the center of the signal where it appears to have
a steady-state. Note that a single cycle of signal will not be able to
establish a good Lamb wave. When one cycle of sine wave is input into the

transducer, due to the damping characteristics of the transducer, certain

transient frequencies are produced. Since these frequencies do not correspond:

to the frequencies required to sustain Lamb waves in the plate, good Lamb

waves will not be produced. Hence a long wave train is used which establishes

the frequency of the signal and the effect of the transients can be ignored.
The transmitter and the receiver move on precision travelling mechanisms

graduated to 0.001 in. The specimen is mounted on a turn table graduated to
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0.1 degrees. When the specimen is rotated, the transducers are moved
accordingly so that the same length of the specimen is always interrogated.
The specimen is rotated in small steps and the peak amplitude and location a
reference peak of the wave train is recorded.

The specimen is fixed at the angle identified as the Lamb angle for the
measurement of attenuation. The receiver is moved by 0.5 inch (12.7mm) in
steps of 0.05 (1.27mm) inch and the received signal is recorded. A
exponential curve is fitted through this amplitude decay and the attenuation
coefficient is estimated by the least-squares fit. The composite specimens
tested during this work were fabricated wusing Magnamite AS4/3502
graphite/epoxy prepreg tapes manufactured by Hercules Inc.

IV. RESULTS AND DISCUSSION

The accuracy of our theory was checked in two ways: (1) against previous
theories, and (2) against our own experiments.

The dispersion equations for a steel plate in water were solved with

c, .= ; and cu=(E/p)2 and complex wavenumber was calcula-

C,__=C c, _=C__=C
11 22 33 12 13 23

ted. Figure 4(a) shows the dispersion curves for the steel plate. The solid
lines are for the symmetric mode (50‘51’52"") and the dashed lines are for
the asymmetric mode (ao,al,az,...). Merkulov® did a corresponding analysis for
an isotropic material but his solution was a first order approximation. Even
then he was able to get good results because his assumption of pL/p « 1 is
valid for steel plate in water where pL/p = 0.128. Figure 4(b) shows the
attenuation for the first two modes. The approximate solution obtained by
Merkulov is also shown and is fairly close to our exact scolution. In
conclusion, the approxi-mate analysis of Merkulov® serves to check our exact
solution.

Next, the sclution of the dispersive equations for an aluminum plate

. \_‘A, [V
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are presented in Fig.5. (We note in passing that for aluminum pL/p = 0.37

which is not negligible in comparison to one and, therefore, Viktorov’'s
calculation may be quite inaccurate). The dispersion curves are exactly as
obtained by Viktorov® but attenuation curves cannot be compared as no
earlier work is available. Next, we describe the experimental results
obtained with an aluminum plate. For a fixed frequency, ktd. we measure the
received amplitude as a function of the angle of incidence. The results are
presented for three different values of ktd in Fig. 6. The peaks in the
received signal correspond to the correct angle of incidence or "Lamb angle"
which is governed by the Snell’s Law;

Sin(ei)/Sin(er) =c /¢ (40)

where el is the angle of incidence, 6r is the angle of refraction

(=n/2 for Lamb waves), ¢ is the wavespeed in water and c, is the Lamb
W

wavespeed. Thus,

[

[of

L cw/sin(el) (41)

It is noted that in Fig.6(a) at ktd=1.0, two peaks are obtained.
Converted to wavespeeds with Eq.(41) the values are shown as circled dots on
the dispersion curves in Fig.5(a). The same comment applies to peaks in
Fig.8(b)and 6(c). The attenuation was measured as described earlier. Measured
values of the attenuation coefficient for an aluminum plate are shown as
circles in Fig. S5(b). For the a, and a, modes the agreement between theory and
experiments is excellent. For the S, mode the agreement is excellent as far as
the lowest ktd (1.0) but becomes poorer as ktd increases. The reason for this
becomes very clear when Figs.5(b) and 6 are examined together: The attenuation
of the S, mode increases very rapidly with ktd z 2.0 (Fig.5(b)). This results
in a correspondingly small received signal for s0 mode(Fig. 6) and a poor

signal to noise ratio. Hence, a larger scatter in data is to be expected. The

- S I S _‘
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importance of calculating attenuation curves becomes apparent: whenever
possible the tests should be performed at low attenuation values to get
accurate results.

Two questions arise at this stage regarding these measurements: (1) How
do we ensure that the angle at which the measurement is made is the correct
Lamb angle? and (2) Is the maximum amplitude criterion sufficient to guarentee
that the angle is a Lamb angle? These questions are addressed here.

The angle of incidence for the Lamb waves can be checked by a very
simple method. Shown in Fig. 7 is the schematic of the signal travelling
through the specimen. When the receiver is at its initial location the total
travel time is given by

t1= ll/c"+12/c+14/cw (42)

As the receiver is moved by a distance x, the travel time becomes

tt=ll/cw+12/cL+13/cL+15/c" (43)

The difference in the two arrival times is

At= t -t = 13/cL+(14—15)/cH = la/cL-xTan(e)/cH

=x/[c cos(8)]-xtan(8)/c (44)

When Snell’s law, Eq.(40), is substituted in Eq.(44), it is seen that At
= 0. This means that at the correct Lamb angle when receiver is moved by any
arbitrary distance, the total time taken by the wave to travel from the
emitter to receiver remains unchanged and only its amplitude is reduced.
Hence in a single experiment the attenuation is obtained and the correctness
of the Lamb angle is verified. The precision of the procedure was found to
be 0.1 degrees.

Next, tests were performed on a [0/903]s graphite/epoxy composite. The
dispersion and attenuation curves for this specimen are shown in Figs. 8(a)

and 8(b), respectively. (The derivation of elastic constants for this laminate

)

ra—
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is deferred to the Appendix). The experimental results are shown as discrete
circles in Fig.8. The comparison between the theory and experiments is
considered reasonable. On the dispersion curves the comparison does not look
very good, but the reason for this discrepancy is as follows. The stiffness
coefficients used to solve the dispersion equations are for an ideal
composite, with coefficients obtained by the rule of mixtures. Since the
laminate used for the tests was fabricated by the author, it is expected that
the properties of the laminate will not be as good as the theory suggests. The
statically measured stiffness of the laminate is lower and the corresponding
wavespeed is shown as an arrow on the figure. In view of the reduced value of
<., the entire dispersion curves will be shifted downwards and then an
excellent agreement between theory and experiment will be observed. This also
means that all the elastic constants to be used in the equations should be
determined experimentally. Then only the solution of the dispersion curves
will be truly representative of the response of the plate. The low attenuation
values shown in Fig. 8(b) could be measured but then the attenuation rises
very rapidly and cannot be measured at higher frequencies due to the reasons
described earlier.

Finally, in this paper we have reported theoretical and experimental
procedures for investigating Leaky Lamb Waves in composite laminates. The
motivation for this work came from the Ultrasonic Nondestructive Evaluation
(UNDE). As a composite laminate is damaged the stiffness decreases and the
attenuation increases. Thus, from a measurement of stiffness and attenuation
one can deduce the extent of damage. Measurement of these quantities in the
through-the-thickness direction is a relatively straight forward matter and
was the subject of a recent investigation by the present authors (Kinra and

Dayal)?s However, it is of equal, if not greater, interest to measure the

a. Mg o

Al
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in-plane stiffness and attenuation. We have measured these quantities as a
function of damage in graphite/epoxy laminates; this will be the subject of
a follow-up paper by the authors.
V. CONCLUSIONS

We have considered the propagation of Leaky Lamb Waves in a balanced
symmetric laminate immersed in a 1liquid. An exact solution for the
dispersion equation has been derived. The wavespeed and the attenuatioq were
also measured experimentally for a [0/903]s laminate. The agreement between
the theory and experiment was found to be quite good.
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The stiffness of an orthotropic lamina is fully defined by the following

elastic constants,

Eljkl -

E1111 E1122

E E
2211 2222

E E
3311 3322

0 0

0 0

0 0

1133

2233

3333

O O O MM m m

m O O O

2323

m O © O O

3131
0

Mm o © O O O

1212J

(A1)

For a lamina with a fiber orientation in an arbitrary direction this

stiffness tensor has to be written in the rotated coordinate directions. For

a fourth order tensor, the transformation law is

where a
1}

1)kl

=a a a a T
pl qj rk s1 pqrs

is the direction cosine between directions i and j.

(A2)

Let directions 1 and 2 be in the plane of the plate and a rotation, 8,

takes

place about axis 3.

Substituting

the rotation

the

transformation law and writing the stiffness in the contracted notation, the

following non-zero terms are obtained,
0]

jk1

-C) cl
11 12
sz €22 C
C (o) c:
31 32 3
0 0 0
0 0 0
61 Csz

23

3
C

C
0

63

44

>

S4

0

C)
45
C’
5§
0

C1sw
Cl
26
C|
36
0

0]

C)
66 -«

Only the above terms will be effective

(A3)

when the stiffness matrix is

synthesised?1 Hence this matrix is used in deriving the governing equations

for the Lamb waves.
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For the AS4/3502 lamina, the following properties were measured,
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and were used to estimate the laminate properties.
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ABSTRACT

This paper is concerned with the use of leaky Lamb waves for the Non-Destruc-
tive Evaluation (NDE) of damage in anisotropic materials such as fiber-reinforced
composites. Two fundamental acoustic properties of the material, namely, the
wavespeed and attenuation have been measured. Stiffness is deduced from the
wavespeed. The damage mode selected for this study is matrix cracking. As ex-
pected, the in-plane stiffness decreases and the attenuation increases with an

increase in the linear crack density.
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ply laminates. The reason for this behavior becomes clear from Fig. la. In
the through-the-thickness mode, the wave travels normal to the plate and the
cracks also lie in the same plane. Obviously, the wave-crack interaction is
low. As mentioned earlier, though changes in attenuation are measured, the wave-
speed or stiffness is not effected. Moreover, out-of-plane stiffness is not
of much use to the designer while in-plane stiffness is an important design criteria.
Hence, ultrasonic waves travelling in the plane of the plate can be used to measure
the relevant changes in wavespeed and attenuation. This mode of wave propagation
is called the Lamb wave (or plate wave) mode. In this mode the waves travel
in the plane of the plate or normal to the cracks, see Fig. 1b, and hence the
crack-wave interaction will be large and it is expected that the in-plane stiffness
can be measured.

When the plate is immersed in a fluid, the Lamb waves travelling in the
plate leak energy into the surrounding fluid as shown in Fig. 2. These waves
in the fluid have been named "Leaky Lamb waves". These leasy Lamb waves can
be sensed by a transducer and the wavespeed and attenuation in the plate material
can be measured. It may be noted here that in the Lamb wave mode of wave propaga-
tion, attenuation in undamaged specimens is due to; (1) energy leaked into the
fluid, and (2) due to the material non-uniformity because of the damage. We
assume that the attenuation due to leakage remains essentially constant but the
attenuation due to damage increases with damage. Hence the measured increase
in attenuation is attributed to the induced damage. The Lamb wavespeed, on the
other hand, is related to the overall stiffness in the plane of the plate and
hence the changes 1n wavespeed are due to the change in the in-plane stiffness
as the damage increases.

Bar-Cohen and Chementi (4) have utilized the leaky Lamb waves for the non-

destructive testing (NDT) of damage in fiber-reinforced composites. They have




shown that various forms of damage can be identified by a null-zone movement
method. When a wave is incident upon the plate, the specular reflection from
the plate takes place along with the generation of Lamb waves in the plate.
Due to phase change in the leaky waves, the specular reflection and the leaky
wave interfere and a well defined null zone is observed; this movement of the
null zone has been related to various defects. They have used this in a C-Scan
type setup to map the damage.

In this work we have taken an entirely different approach in utilizing Lamb
waves for the NDE of composites. The receiving transducer is placed in such
a position that the specular reflection is completely avoided and only the leaky
waves are sensed. Shown in Fig. 2 is the relative position of the transmitter
and the receiver. The wavespeed and attenuation in the specimen are measured
from the received signal. The specimen is damaged and transverse cracks are intro-
duced in the cross-ply laminates. We present here some results for the NDE of
cross-ply laminates by leaky Lamb waves. It is observed that attenuation increases
and in-plane stiffness decreases as damage is induced in the composites. The
technique has a good potential for field application since it is non-destructive
and is the only NDE technique available for the in plane stiffness measurement.

Furthermore, as will be shown later, it yields local values of properties.

THEORY

The detailed derivation of the dispersion equations for a general balanced
symmetrical composite laminate immersed in a fluid are reported in a companion
paper (5). The basic symmetrical mode (sy) has been selected for the tests.
The reason for this selection will be described in details in the results section.
It will suffice to mention at this stage that in this mode the wave travels as
a plane-fronted wave. Also, the wavelength of the wave is large in comparison

to the crack-size and therefore the composite can be treated as an anisotropic




homogenous material. In this mode it can be shown (6) that when fd is small,

c2 = Ey/o{1-vi2vp1) (1)
where f is the test frequency, 2d is the plate thickness, ¢ is the Lamb wavespeed,
E} is an in-plane modulus, and vi2 and vy} are the two in-plane Poisson's ratios.
For the composites tested during this investigation vypv1<<1 and hence Eq. (1)
reduces to,

c2 = Ey/p A (2)

The refraction of ultrasonic waves through a plate follow the Snell's law
of refraction;

Sin(03)/5in(0,.) = v /c (3)
where v  is the wavespeed in water, 0; and O. = 7/2 are the angles of incidence
and refraction, respectively. Thus,

¢ = v, /Sin(0;) (4)
combining Eq.(4) with Eq.(2),

Ey = olv,/Sin(07)]2 (5)

This equation is used for the measurement of the in-plane stiffness in this
work.

It is obvious from Eq. (5) that the measurement of ©; will be an important
factor in the accuracy of measurement. A very simple but elegant method has
been devised to accurately ascertain the Lamb angle. As shown in Fig. 2 the
receiver is moved by a distance, x. A very elementary calculation (5) shows
that at the correct Lamb angle, total travel time from the emitter to the receiver
is independent of x. Thus, though the receiver is moved on its travelling mecha-
nism, the signal on the oscilloscope remains unchanged on the time scale: only
its amplitude is reduced. It was determined that the Lamb angle could be measured
with a precision of 0.1 degrees. The decrease in the amplitude of the signal

as the receiver is moved, is recorded and by fitting an exponential curve through
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the points, the attenuation coefficient is calculated. Thus, in one experiment
the attenuation is obtained and the validity of the Lamb angle is also checked.
The accuracy of measurement of modulus is estimated to be 2%, and for attenuation

it is about 10%.

EXPERIMENTAL PROCEDURE

The block diagram of the experimental setup is shown in Fig. 3. The pulse
generator produces a trigger signal which is used to trigger the signa. generator
and also set the initial time for the digitizing oscilloscope. The pulse generator
produces a train of sinusoidal signal. Since these signals are typically of a
few volts in amplitude, a power amplifier is used to amplify the signal to about
200 Volts. This amplified signal is then fed into the transmitting transducer.
The transducer produces an ultrasonic wave which is transmitted through the water
and specimen to the receiving transducer. The receiver sends the signal to the
signal amplifier, which provides the oscilloscope with a signal of about one
volt. The digitizing oscilloscope averages the signal over 64 samples and stores
the average. On demand from the computer, the necessary information is provided
by the oscilloscope cver an IEEE-488 bus. The wavespeed and attenuation are
then calculated. Entire operation of the oscilloscope is controlled by the com-
puter.

Water is used as an acoustic couplant; the transducers are mounted inside
a water bath. Transmitter and receiver are mounted on two travelling mechanisms
graduated to 0.001 inch and the specimen is placed in a holder mounted on a turn-
table which is graduated to 0.1 degrees. When the specimen is rotated to achieve
the correct Lamb angle, the length of the specimen between the transducer is
increased. To offset this increase, the two transducers are moved laterally
such that same length of the specimen is interrogated throughout the experiments.

Since repeatability is very important in our measurements, the specimen holder
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js designed so that exact replacement of the specimen is achieved every time.
The specimen is carefully placed against a tab fixed on the specimen holder on
each replacement. A typical plot of received signal as the specimen is rotated
is given in Fig. 4.

A1l composite specimens are made of Magnamite AS4/3502 graphite/epoxy prepreg
tapes manufactured by Hercules Inc. Transverse cracks were chosen to be the
mode of damage for all the studies reported here. Towards this end cross-ply
laminates with layups of the type [0y,/90,]¢ were fabricated. Typically the speci-
men are plates of 1"X11" size.

A11 loading to induce damage in the specimen was performed on INSTRON Model
125 equipped with a 20,000 1b load cell. The tests were conducted in the stroke-
control mode. The cross-head speed used was 0.05 in/min in the initial stages
of damage. When nearing the ultimate strength of the specimen the speed was
reduced to 0.02 in/min.

The edges of the specimens were polished with 5 and 1 micron alumina powder.
This is done to get good quality edge replications. A record of the cracks devel-
oped in the specimen was maintained in the form of edge replications. In order
to open the cracks, the specimens are loaded in the INSTRON machine to about
500 1bs. The replicating tape is softened by acetone and pressed against the
edge of the specimen. The tape material flows into the crack and hardens in
about 30 seconds. The tape is removed and the replica of the cracks can be viewed
under a microfiche reader.

In the early stages of this work, water seepage into the cracks was found
to be a major source of error and this was prevented by coating the edges with

a strippable coat (Mfg. Sharwin Williams).

RESULTS AND DISCUSSIONS

Dispersion equations for Lamb waves in isotropic materials are available




in the published literature, they were solved (8) based on the assumption that
the attenuation due to leakage is negligibly small. This assumption is reasonably
valid as long as p]/p>>] wherep]'and p are the densities of the plate and the
immersion fluid, respectively. If one is studying steel/water system then olye
is, in fact, large compared to one. However, for the fiber-reinforced composites
studied in this work, pl/p = 1.53 and therefore, neglecting the inertial loading
of water will result in gross error in the dispersion curves as also shown by
Plona et al (9). Therefore, we have derived an exact solution for the dispersion
equations for an anisotropic plate immersed in a fluid and have obtained the
dispersion curves as well as the attenuation curves. These have been reported

in an earlier paper (5). Some results from the work are shown in Fig. 7 for

the sake of continuity.

Before embarking on the NDE of composites, we performed some numerical calcula-
tions to study the sensitivity of various wave speeds and frequencies on different
components of the stiffness matrix. The four elastic constants cy1, €33, €55,
and cy3 are the contributors to the dispersion equations. In this study one
stiffness coefficient is decreased at a time and the Lamb wavespeed calculated.
The studies are made on a [0/904]¢ laminate. The effects of the degradation
in stiffness constants on the basic symmetric and asymmetric modes, sg and ag
respectively, are studied. The results for the symmetric mode at a fd = 0.25
MHz-mm (kd = 0.32) are shown in Fig. 5a. Quite expectedly, only cyy contributes
significantly to the reduction in the wavespeed. The effect of c33 and ¢)3 is
very small and the effect of cgg is practically zero. An interesting result
is that if the degradation takes place in cj3 then the ‘..vespeed increases; the
effect is however very small. Shown in Fig. 5b is the effect of stiffness degrada-
tion on the ag mode at fd = 0.5 MHz-mm (kd = 0.63). Now ap is the fundamental
flexural mode and is well known that shear deformation plays a significant role
in the propagation of flexural waves. Accordingly, it is observed that the major

8
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contributor in this case is cgg but contributions due to cj; and c33 are not
negligible. A decrease in c33 results in an increase in Lamb wavespeed. However,
c13 does not contribute to the change in wavespeed.

The results for the next higher modes, s} and aj are shown in Fig. 6. The
effect of s) mode is studied at fd = 2.00 MHz-mm (kd = 2.53). For this mode
the major contribution comes from the c33 and c)). On the other hand degradation
in cgg and c13 will tend to increase the wavespeed and their contributions are
not negligible. The results for aj mode are at fd = 0.6 MHz-mm (kd = 0.76).

Here cjj and cgg effects are of the same order and ¢33 and ¢33 effects are neg-
ligible.

The conclusions of this study are that the Lamb wave technique is useful
in measuring the degradation in cj1, which can be made with tests in sg mode.

To some extent, by using the ag mode the degradation in cgg can be studied.

Since contributions from other modes will also affect the Lamb wave speed, the
measurements will not be reliable for the case of ag mode. But a combination

of tests may prove to be useful. For example, the degradation in c33 and cq)

can be measured by tests in s} mode. If the ratio of these degradations is esti-
mated, then the effect of c33 can be separated. Similarly, the effect of cgg
can be measured by combining aj and sp modes. Based on this sensitivity study
it was decided to carry out all measurements in the sgp mode.

First, the tests were performed on a [0/903]¢ graphite/epoxy composite Tami-
nate. The dispersion curves for this specimen are shown in Fig. 7a. The solid
lines are for symmetric mode and dashed lines for asymmetric modes. The attenuation
curves for various modes are shown in Fig. 7b. The tests for Lamb wavespeed
and attenuation in undamaged specimens, as described earlier, are performed and
the results are shown as discrete points on Fig.7. The theoretical curves are

from stiffness values calculated by the rule of mixtures (7); the agreement between




theory and experiments is considered satisfactory. The static stiffness of the
laminate was also measured in a tensile testing machine and the corresponding
wavespeed is shown as an arrow in Fig. 7a. This shows that if the experimentally
determined values of the stiffness constant are used in the dispersion relations
then a better correlation between the theory and experiments will be observed.

Now the same [0/903] laminate is tested to study the effect of transverse
cracks on the Lamb wave speed and attenuation. The tests are conducted at a
frequency of 0.5 MHz with fd = 0.275 MHz-mm (kd = 0.34). The reduction in the
normalized stiffness as a function of number of cracks per centimeter as damage
progresses is shown in Fig. 8. The normalized stiffness is defined as E/Ep where
Ep is the stiffness of the undamaged laminate and E is the stiffness of the damaged
laminate. The figure also shows a dashed horizontal line which denotes the stiff-
ness of the damaged laminate calculated by the ply-discount theory. In this theory
the stiffness of the cracked lamina is assumed to be zero in the direction normal
to the crack and the laminate stiffness is synthesized. The experimental results
obtained by the Lamb wave technique are within the lower limit set by the theo-
retically obtained limit.

Next, a [0/904]g laminate is tested when damage is induced in it. The test
is performed at 0.5 MHz with fd=0.355 MHz-mm {(kd = 0.44). The reduction in stiff-
ness for this laminate is shown in Fig. 9. Also shown in the figure is the damage
state and the position of the transmitter (TR) and receiver (R) relative to the
specimen. It is observed that in going from damage state 3 to state 4, though
there was a substantial increase in the total number of cracks in the specimen,
the number of cracks in the region interrogated by the transducer did not increase.
As a consequence, no change in the stiffness of the specimen was recorded. This
is very reassuring for it demonstrates that our measurement reficcts local changes

in the stiffness. For this specimen, stiffness reduced by about 30 % as compared
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to the virgin state. The dashed line shows the stiffness reduction as calculated
from the ply-discount theory but for this specimen the measured stiffness was
slightly lower than the theoretically calculated value. In comparison to the
reduction for the [0/903]g laminate it is observed that the stiffness reduction
for this laminate is larger. The reason for this is that the net contribution
of the eight-90° plies to the overall stiffness is more than the contribution

of six-90° plies and hence failure of plies in the [0/904]s laminates results

in a higher reduction in relative stiffness. Observe that the [0/903]5 laminate
has a crack length of 6-ply thickness long while the [0/904]s laminate has a
larger crack length of 8-ply thickness long.

The next set of tests were performed on a [07/902/0]¢ laminate. For this
laminate the crack size is very small; 2 ply-thickness long. The reduction in
stiffness as transverse cracks are introduced is shown in Fig. 10. Observe a
smaller reduction in stiffness. Even though this laminate has four-90° plies,
they are divided into groups of two, and also, the total number of 0° plies in
this laminate is increased three times. Thus the total contribution of the 90°
plies to the overall stiffness is very low and hence their failure results in
less reduction in stiffness.

The attenuation increase in the three laminates tested are combined together
and shown in Fig. 1l1. Shown also in the figure are the kja for the three lami-
nates. The purpose behind this presentation is to demonstrate the effect of
the normalized scattering cross-section of the cracks, kja, on the attenuation.
In this context we cite an excellent work by Tan (10) who has calculated the
normalized scattering cross-section of a Griffith crack subjected to a longitudinal
plane wave loading; see Fig. 12. Since Tan's calculation is for an unbounded
medium, it cannot be applied quantitatively to the present case. However, it

does provide an excellent background in which the present results can be explained
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qualitatively. In [02/90/0]g laminate kja = 0.06. As is well known this is

the so-called Rayleigh scattering regime where the scattering cross-section of

a cracks is very small. The waves pass through the plate without seeing the

cracks and as a result the increase in attenuation is very low. For [0/903]¢

laminate kja = 0.26 while for the [0/904]g laminate kja = 0.45 and the observed

increase in attenuation is very high. The effect of kja on measured attenuation

is very interesting. Kinra (11) has worked with composites consisting of Lead

spheres in an epoxy matrix and has shown that the wave propagation in these compo-

sites occurs along two separate branches: (1) the low frequency, slower, acoustical

branch along which the particle motion is essentially in phase with the excitation,

and (2) the high frequency, faster, optical branch along which the particle displace-

ment is essentially out of phase of the excitation. The two are separated by

a cut-off frequency which corresponds to the excitation of the rigid-body-transla-

tion resonance of the heavy inclusion. This occurs when kja = 0(1), where a

is the inclusion radius. Around the cut-off frequency both the phase velocity

as well as the attenuation change very dramatically. This phenomenon is shown

in Fig. 13 taken from our earlier work(12). It is our conjecture that a similar

phenomenon is taking place in these laminates and the cracks act as inclusions.
These results forewarn against an arbitrary selection of the test frequencies.

Depending on the flaw size, a, the test frequency and hence the kja has to be

chosen such that a good signal amplitude decay curve is obtained. If the attenua-

tion falls very slowly with damage then it will not be a sensitive measure of

the damage. On the other hand if the attenuaton falls very rapidly then at a

relatively low crack density the received signal will be lost and the measurement

will be inaccurate.

CONCLUSIONS

Propagation of a leaky Lamb wave in its fundamental mode in three cross-ply

12




laminates; [02/902/0])g, [0/903]g, and; [0/904]s, has been studied experimentally.
The effect of matrix cracking on the speed (i.e. stiffness) and attenuation was
studied in the long wavelength regime. As expected, it was found that the in-plane
stiffness decreases while the attenuation increases with linear crack density.
Therefore, either of these quantities may be used to measure the damage-induced
degradation of the in-plane stiffness. A particular advantage of this method

is that one can measure the local values (average over the transducer diameter)

of stiffness. The attenuation, on the other hand, is averaged over the distance

between the transmitter and receiver.
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